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Abstract

Adhesions represent a major burden in clinical practice, particularly following abdominal, intrauterine, pericardial
and tendon surgical procedures. Adhesions are initiated by a disruption in the epithelial or mesothelial layer of
tissue, which leads to fibrin adhesion sites due to the downregulation of fibrinolytic activity and an increase in fibrin
deposition. Hence, the metabolic events involved in tissue healing, coagulation, inflammation, fibrinolysis and
angiogenesis play a pivotal role in adhesion formation. Understanding these events, their interactions and their
influence on the development of post-surgical adhesion is crucial for the development of effective therapies to
prevent them. Mechanical barriers, antiadhesive agents and combination thereof are customarily used in the battle
against adhesions. Although these systems seem to be effective at reducing adhesions in clinical procedures, their
prevention remains still elusive, imposing the need for new antiadhesive strategies.
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Background

Adhesions represent a major postoperative complication,
particularly in abdominal, pelvic, pericardial and tendon
surgical procedures, where they cause pain, stiffness and
loss of function. Adhesions occur through inflammation
and coagulation processes, triggered by surgery, injuries
or irritation, that damage the cell monolayer placed on
the basement membrane in tissues, leaving them ex-
posed to fibrin deposition that leads to further fibroblast
attachment and vasculature generation. These issues, to-
gether with a decrease in fibrinolytic activity, result in
the deposition of organised extracellular matrix (ECM)
and adhesion formation. The incidence of adhesions
after abdominal surgery varies from 55 to 66%, and ad-
hesions are typically underestimated by surgeons. In
1994, the estimated total financial cost of adhesions in
the US was US$ 1.3 billion [1]. Intrauterine adhesions or
Asherman syndrome may also reach a prevalence of 45%
[2]. Pericardium adhesions contribute to an increase in
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the rate of inadvertent injuries, which is approximately 7
to 9% [3], and have been estimated to increase due to
the growing number of cases of cardiac reoperations [3,
4]. Moreover, adhesion formation is a major problem in
tendon repair, which entails a loss in the range of mo-
tion in the flexor tendon from 16 to 27% of cases [5]
and reoperation in 4% of cases [6].

Adhesions can be classified into de novo, which ori-
ginate in a tissue area for the first time, and secondary
adhesions, which are produced in areas that adhesions
had previously formed. As a function of their location,
structure and derived pathology, adhesions can remain
silent or cause complications [7, 8]. The severity of the
complications caused may vary depending on the tissue
where they are located. For instance, in abdominal sur-
gery, adhesions may lead to abdominal pain and small
bowel obstruction, whereas in pelvic surgery, they may
lead to female infertility [1]. Additionally, pericardial ad-
hesions may contribute to an increase in the risk of in-
advertent injuries in the heart and great vessels and
perioperative bleeding [3]. Pericardial adhesions may ex-
tend the operation time, increasing the associated risk
and costs. The formation of adhesions in tendon repair
may involve a loss of healthy biomechanical and gliding
properties, thereby limiting the function of the repaired
tendon [9]. Overall, adhesions result in pain, loss of
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tissue function and severe complications. Thus, the de-
velopment of preventive systems that avoid the forma-
tion of adhesions is crucial to improve surgical
outcomes and reduce patients’ pain, reoperation rates
and subsequent costs. Although different methods are
currently employed, adhesion prevention formation re-
mains a major challenge in surgery. Thus, further efforts
are needed to develop an efficient system that will pre-
vent the formation of post-operative adhesions.

In this review, we aim to describe the mechanism
underlying adhesion formation, including the pathways,
metabolites and cell types involved. The specific charac-
teristics of adhesions in the different tissues will also be
identified. Different methodologies that are currently be-
ing investigated and used to battle adhesion formation
will also be discussed.

Adhesion formation and metabolic pathways

Adhesion formation results from an imbalance between
fibrin deposition and fibrinolytic activity. These events
are regulated by different systems and pathways (e.g. in-
flammation, coagulation and fibrinolysis) that involve
different cell types, their interactions and complex
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molecular mechanisms, which are shown schematically
in Fig. 1. Understanding how these pathways work and
interact is necessary to understand adhesion formation.

Inflammatory response and coagulation mechanism

Surgery, infection or irritation lead to the disruption of
the epithelial or mesothelial layer that rests on the basal
membrane, leaving it exposed. Subsequent infiltration of
blood neutrophils and monocytes sparks inflammation,
which elicits the secretion of fibrin-rich exudate as part
of the initial healing process [10]. Simultaneously, coagu-
lation and platelet aggregation are initiated to avoid ex-
cessive blood loss, which occurs through the activation
of pro-coagulation factors in the blood or the cell mem-
brane of injured cells, platelets and vascular endothelial
cells. These factors culminate in the formation of fibrin
monomers from fibrinogen, which is mediated by
thrombin [11, 12]. Then, the aggregation of these fibrin
monomers and activated platelets form coagulation clots
[12]. The pool of factors (e.g. growth factors, cytokines,
chemokines, eicosanoids, and proteases) released from
activated platelets, together with the degradation prod-
ucts of fibrinogen and fibrin cleaved by thrombin and
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Fig. 1 Interaction of the main pathways involved in adhesion formation. Inflammation, which is mainly mediated by macrophages, through
cytokines and growth factors initiates the healing process by promoting fibrin exudate formation. Coagulation is simultaneously elicited, resulting
in the formation of fibrin clots, which amplify the inflammatory response and attract inflammatory cells. When coagulation occurs, the
anticoagulation system activates to downregulate the formation of thrombin and subsequently, fibrin. Both inflammation and anticoagulation
downregulate each other. The fibrinolytic system degrades fibrin and extracellular matrix (ECM) components; however, inflammatory cytokines
regulate the formation of plasminogen activator inhibitors (PAI), downregulating fibrinolytic activity. Fibrinolytic system components can activate
MMPs, which are in charge of degrading ECM components. Both MMPs and the fibrinolytic system are involved in angiogenesis, the production
of new vasculature that is promoted by inflammatory cytokines and hypoxia. Hypoxia occurs in fibrin clots, sparking the differentiation of
fibroblasts to adhesion phenotype fibroblasts. This process, together with angiogenesis, promotes the deposition of organised ECM and
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plasmin, serves as chemo-attractants for macrophages,
neutrophils, T cells, mast cells, mesothelial cells and epi-
thelial cells that are involved in the inflammation
process and in healing [13].

Chemokines are a group of polypeptides that mediate
the chemo-attraction of leukocytes. The main chemo-
kines involved during the inflammatory response are
produced by macrophages [13], platelets, mesothelial
cells and endothelial cells [14, 15]. Other key cytokines
involved in the regulation of inflammation are TNF-q,
IL-1, IL-6 and IL-12 (pro-inflammatory), as well as IL-10
and TGF-B (anti-inflammatory) [16]. These cytokines
also regulate the coagulation cascade, where IL-6 mainly
induces the expression of tissue factor, initiating the co-
agulation cascade and culminating in fibrin deposition.
Reciprocally, the coagulation proteases can modulate in-
flammation by stimulating the production of cytokines
and growth factors when they bind to protease-activated
receptors (PARs), which are present on endothelial cells,
mononuclear cells, fibroblasts and platelets [11].

The protein C anticoagulation pathway is another
process that can influence inflammation and coagulation
systems. The protein C pathway regulates thrombin for-
mation and is triggered when thrombin binds to thrombo-
modulin on the membranes of endothelial cells. Then, this
binding increases protein C activation and blocks the
thrombin catalysis of fibrin formation and downregulates
coagulation [17]. However, during inflammation, the pro-
tein C anticoagulation pathway is downregulated [11, 17].
Alternatively, anticoagulant pathways such as the protein
C pathway also downregulate inflammation by blocking
cytokine production and tissue factor expression [11].

Fibrinolytic system

The fibrinolytic system is composed of the following key
elements: plasminogen / plasmin, plasminogen activators
(PA) t-PA and u-PA, plasminogen activator inhibitors
(PAI) and plasmin inhibitors (mainly a2-antiplasmin).
This system is also tightly associated with matrix metal-
loproteinase (MMP) activity [18].

Plasminogen is an inactive proenzyme that is converted
into the active form (plasmin) by tissue plasminogen activa-
tor (t-PA) and urokinase plasminogen activator (u-PA); these
reactions are inhibited by PAls. Plasmin cleaves ECM com-
ponents and efficiently degrades fibrin and is simultaneously
inhibited by o2-antiplasmin [10, 18]. The components of the
fibrinolytic system are produced in macrophages, wound
cells and mainly mesothelial cells, which suggests a crucial
role of an intact mesothelium for fibrin degradation and
limitation of adhesion formation [13].

t-PA has low activity in the absence of fibrin, but in its
presence, t-PA is highly effective at activating plasminogen
[10, 18], and it mainly proceeds from mesothelial and
endothelial cells [19]. u-PA enhances plasmin production
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when it binds to its receptor (u-PAR) by activating plas-
minogen and u-PA seems to regulate extracellular proteo-
lytic activity [18]. However, the activation of plasminogen
is further inhibited by the delayed release of PAI-1 from
endothelial and mesothelial cells [11, 18]. This process is
regulated by the proinflammatory cytokines TNF-a and
IL-1B, and the expression of these cytokines is also stimu-
lated by fibrin and fibrinogen [11].

Several components of the fibrinolytic system may also
interact with MMPs, which main role is the degradation of
ECM components. Plasmin activates some MMPs in vitro,
while in vivo, the activation of certain factors is dependent
on plasmin, such as plasmin-dependent activation of
proMMP-9 [18, 20]. MMP-3 may also regulate the plas-
minogen/plasmin pathway by decreasing the amount of
plasminogen available for its activation and by simultan-
eously inhibiting a2-antiplasmin and PAI-1 [21]. In addition,
adhesion fibroblasts present elevated expression of MMP-1
and tissue inhibitor of metalloproteinase 1 (TIMP-1) [22].

In summary, coagulation and inflammation are parallel
processes that maintain a tight interaction and generally
promote adhesion formation since they promote the de-
position of fibrin. However, the deposition of organised
matrix to form adhesions also depends on the anticoagu-
lation and fibrinolytic systems, which decreases the de-
position of fibrin and metabolises the deposited matrix,
respectively. Both pathways also maintain close inter-
action with inflammation and coagulation processes in
which several mediators from each system can modulate
the performance of another. These interconnections be-
tween pathways complicate the understanding of healing
and adhesions but also offer a multitude of clinical tar-
gets to battle adhesion formation after surgery.

Angiogenesis

Angiogenesis is highly involved with inflammation and
fibrinolytic processes; therefore, it must influence adhe-
sion formation. Angiogenesis comprises the degradation
of the surrounding ECM and the migration and prolifer-
ation of endothelial cells to form new vascular conduits.
Several cytokines and growth factors, including IL-1,
IL-8, TNF-a, VEGF and TGF-f, are considered stimula-
tors of angiogenesis [13, 23, 24]. However, angiogenesis
is dependent on the balance between its promoters and
inhibitors, which include numerous cytokines, growth
factors and other agents [13]. In addition to endothelial
and mesothelial cells, diverse cell types, such as platelets
[25], macrophages [26] and fibroblasts [27], play a key
role in angiogenesis. Angiogenesis starts during inflam-
mation and requires the fibrinolytic system to initiate
the invasion of endothelial cells. Furthermore, under low
oxygen tension environments, adhesion fibroblasts in-
crease the production of VEGE, promoting the formation
of capillaries [24]. The growth factors that promote
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angiogenesis modulate the expression of fibrinolytic
components and inhibitors, where the TGF-$ pathway
acts as a mediator [13, 23]. Although the precise mech-
anism by which angiogenesis modulates adhesions is not
fully understood, it is believed that it has a direct effect
on enhancing adhesion formation. It has been suggested
that excessive angiogenesis increases the recruitment of
pericytes, which adopt a fibroblastic phenotype support-
ing scar formation. Also, the regression of capillaries re-
sults in endothelial apoptotic cells, which presence also
enhances fibrosis [28]. Nonetheless, the importance of
angiogenesis for the formation of adhesions represents
additional targets to develop strategies in the prevention
of their formation after surgery.

Adhesion pathophysiology

Adhesion formation is initiated by an imbalance of fibrin
deposition, which is triggered by coagulation, inflamma-
tion and fibrin degradation. These processes are mainly
regulated by the fibrinolytic system of endothelial or
mesothelial cells. Once fibrin clots are formed, if they
persist, they serve as a scaffold for the inflammatory
cells and fibroblast attachment that, together with vascu-
lature formation, lead to the deposition of organised
matrix and subsequent adhesions. The permanency of
the fibrin clots mainly depends on the integrity of the
mesothelium and basal membrane; when these struc-
tures are compromised, fibrinolytic activity is not bal-
anced with fibrin deposition [8, 10, 13, 15, 22]. Although
this model is generally accepted for most tissues, cell
populations, molecular pathways and tissue-specific
complications determine in the end how adhesions will
be formed.

Peritoneum

In normal wound healing, fibroblasts undergo apoptosis,
creating low oxygen tension. Subsequently, more fibro-
blasts attach and change their phenotype to myofibro-
blasts and remodel the tissue [29, 30]. Regarding
peritoneal adhesions, fibroblasts change their phenotype
to an adhesion phenotype under hypoxic conditions
[22], upregulating the production of VEGF to enhance
the reoxygenation of hypoxic tissue that these clots rep-
resent [24]. The adhesion phenotype is characterised by
an increase in the expression of fibronectin, collagen
type I and III in comparison to that of normal fibroblasts
[22], mainly promoted by TGF-p [23]. The proteolysis of
the deposited ECM carried out by fibrinolytic and MMP
systems is also crucial to determine the fate of adhesions
at this stage [13]. The main function of the peritoneum
is to provide a frictionless and protective barrier to iso-
late and allow movement of organs and tissues and ad-
hesions may interfere with these functions, causing
bowel obstruction and chronic abdominal pain [31].
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Pericardium

Adhesions formed in the pericardium have also been widely
studied. However, these studies are limited to the intraoper-
ative period due to the nature and severity of the surgical
procedure. The mechanism in the perioperative period has
been inferred from experimental animal studies and peri-
toneal adhesions [3]. As observed in the peritoneum, the
detachment pericardial mesothelial cells (PMC) is crucial in
the further formation of adhesions since a decrease in fi-
brinolytic activity can be observed in the areas where de-
nudation has occurred [3, 32]. The detachment of PMCs
reportedly occurs after 135min of pericardiotomy when
they remain floating in the pericardium cavity [3, 33]. If the
basal membrane remains exposed, fibrin deposition occurs,
and the adhesion formation process starts and develops in
the pericardium. Mediators of the inflammatory response,
such as TGF-f, promote the detachment of PMCs and the
loss of the epithelial phenotype for a fibroblastic one, pro-
moting fibrotic processes [34] .The detachment of PMCs
has also been related to a decrease in the activation by plas-
minogen [32]. During the regeneration of the mesothelium,
these denuded areas may be covered by mesothelial cells
from different sources, including activated mesothelial cells
adjacent to the site of the injury and pre-existing floating
PMCs [3, 15, 32]. When adhesions are formed on the peri-
cardium, they may complicate contraction movements and
flow, leading to several complications, including (in ascend-
ing order of severity) an increased risk of inadvertent injur-
ies and reoperation [3], increased intraoperative bleeding
[35], compression of the heart [36] and malfunction of ven-
tricle contraction [37].

Tendon

Tendon healing is similar to healing processes observed
in other tissues [38]. Tendon healing is normally divided
into the following phases: the inflammation stage where
inflammatory cell recruitment occurs; the proliferation
stage where tenocytes and macrophages direct the de-
position of the initial matrix, mainly collagen type III;
and the remodelling stage when reorganisation of ECM
is carried out, and aligned collagen type I fibres are de-
posited [9, 39-41]. During the inflammatory phase, the
infiltration of surrounding fibroblasts, commonly known
as extrinsic healing, leads to the formation of adhesions.
However, the repair modulated by endotenon and epite-
non tenocytes results in proper healing, prevention of
adhesion formation and preservation of the gliding prop-
erties of the tendon [9, 40]. Similar to the peritoneum
and pericardium, the attraction and attachment of sur-
rounding fibroblasts is initially triggered by fibrin clots
in the tendon [39]. Recent research in mice has demon-
strated that tendons are covered by a basement mem-
brane and epithelium that retain cells in the tendon.
When both the epithelium and basal membrane remain
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intact, fibrin deposition and subsequent adhesions are
prevented [42]. These findings match the model of adhe-
sion formation in other tissues that have been more
thoroughly investigated. The role of macrophages can
also determine the outcome of healing, where the imbal-
ance between M1 (proinflammatory) and M2 (anti-in-
flammatory) macrophages can lead to poor healing or
excessive tissue deposition [40]. Adhesions in tendons
obstruct extension and contraction movements since
they increase the friction, resulting in a loss of gliding
properties and range of motion, which increases the re-
covery time and may cause substantial morbidity [39].

Uterus

After pelvic surgery, the formation of intrauterine adhesions
is directly related to trauma and denudation of the endo-
metrium, which promotes the attachment of surrounding
tissue [43]. More specifically, the disruption of the endomet-
rium and exposure of the basement membrane, myome-
trium or connective tissue leads to the formation of scar
tissue [44]. The formation of adhesions in the uterus is trig-
gered in chronic inflammatory conditions, such as endo-
metriosis due to the maintenance of inflammation by
macrophages after the acute inflammatory response con-
tributes to the formation of adhesions, as supported by in
vivo models [45]. The insufficient re-vascularisation of the
endometrium, which in normal conditions occurs cyclically
with menstruation, prevents the repair of the endometrial
cell layer and enhances adhesion formation, suggesting that
angiogenesis in endometrium may influence its repair once
adhesions are formed [46]. Moreover, in the case of intra-
uterine adhesions, oestrogen seems to play a crucial role,
interacting with important molecules in inflammation and
angiogenesis such as TGF-B or VEGF [46]. Circulating
levels of oestrogen are closely related to endometrium re-
generation where a decrease in its levels slows its formation
by endometrial progenitor cells. This process, together with
inflammation and/or infection, enhances the formation of
fibrotic tissue [47]. The formation of intrauterine adhesions
has a high incidence and can cause chronic abdominal pain
infertility.

Battling adhesions

The formation of adhesions is a common complication
in different surgeries and interferes with the function of
the tissue where they are produced. Furthermore, adhe-
sions lead to complications of varying severities, challen-
ging the welfare of the patients. Thus, it is crucial to
limit their formation.

Surgical procedures

The main factor that promotes the formation of adhe-
sions after surgery is the disruption of the epithelium or
mesothelium and basal membrane structure, which has
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been related to lower fibrinolytic activity. Thus, it is lo-
gical to assume that compared with more invasive pro-
cedures, less invasive surgical techniques that
consequently reduce the damage to the epithelium /
mesothelium will reduce adhesion formation.

In abdominal surgery, several studies have shown a re-
duction in adhesion formation with a reduction in invasive-
ness. For example, compared with open surgery,
laparoscopy has been associated with a reduction in the for-
mation of adhesions and their severity [1, 48]. However,
other studies conflict with this idea, stating that laparoscopy
has no beneficial effect on adhesion formation [49, 50].
These conflicting results could be explained by the fact that
although laparoscopy reduces trauma, the desiccation, use
of foreign bodies and insufflation of CO, during laparos-
copy can promote adhesion formation due to the induction
of hypoxia [49, 51]. Similarly, the use of minimally invasive
techniques that reduce PMC loss and the damage to the
mesothelium is advocated to avoid pericardium adhesions;
however, no evidence supporting this theory has been re-
ported to date [3]. Alternatively, minimally invasive surgical
techniques have been shown to reduce adhesion formation
in Achilles tendon repair [52]. Furthermore, specific sutur-
ing techniques seem to influence the adhesion rates in ten-
dons; for example, studies on flexor tendon repair showed
that the Kessler suture can drastically reduce the likelihood
of adhesion formation [6], which can be related to reduced
friction due to fewer strands [53]. In pelvic surgery, recur-
rent curettage interventions seem to be the major risk fac-
tor for intrauterine adhesion formation after miscarriage
[54]. Therefore, a surgical approach that reduces trauma to
the endometrium is preferred to prevent adhesions. This
approach would involve, for instance, reducing the employ-
ment of electrosurgery [55] or using smaller surgical tools
for hysteroscopy [44].

Once adhesions have formed, surgery offers the possibility
of excision with different techniques. However, as previously
stated, the incremental number of procedures increases the
odds of adhesion formation and poses an increased risk for
the patient. Thus, techniques that prevent adhesion forma-
tion are preferred to recurrent interventions.

Mechanical barriers

Mechanical barriers are widely used to prevent adhe-
sions in different tissues, which has promoted the devel-
opment of several related products for different tissue
targets (Table 1). The principle of the use of mechanical
barriers is to place a barrier around the surgical area that
isolates it from surrounding tissues, avoiding the attach-
ment of fibrin clots and further adhesion formation.
Thus, a suitable mechanical barrier should be degrad-
able, persist during the entire healing process and be
inert to the immune response. Mechanical barriers can
include solid polymers, gels and liquids [49].
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Product Type of product Company Target FDA/CE Clinical
approval trial(s)

Seprafilm® Solid barrier, hyaluronate Sanofi Genzyme, Massachusetts, USA Peritoneum, FDA, CE Yes [49, 50]

carboxycellulose pericardium, tendon Yes [64, 65]
No
Interceed®  Solid barrier, oxidised cellulose Johnson & Johnson, New Jersey, USA Peritoneum, endon FDA, CE Yes [51]
No

Adept® Liquid barrier, 4% icodextrin Baxter, lllinois, USA Peritoneum FDA, CE Yes [52-54]

SprayShield™  Liquid barrier, polyethylene glycol Covidien-Medtronic, Minneapolis, USA Peritoneum CE Yes [55-57]

Hyalobarrier® Gel barrier, autocrosslinked hyaluronic  Anika Therapeutics, Bedford, USA Peritoneum CE Yes [58]
acid

REPEL-CV® Solid barrier, ethylene oxide and Pathfinder Cell Therapy (SyntheMed), Pericardium FDA, CE Yes [61]
polylactic acid Massachusetts, USA

CardioWrap®  Solid barrier, polylactic acid MastBiosurgery AG, Zurich, Switzerland Pericardium FDA, CE No

COVA™ + Solid barrier, collagen Biom'up, Lyon, France Pericardium CE Yes [67]

CARD

CorMatrix® Solid barrier, porcine extracellular CorMatrix, Georgia, USA Pericardium FDA, CE Yes [68]
matrix

Coseal™ Gel barrier, polyethylene glycol Baxter, lllinois, USA Pericardium FDA, CE Yes [72, 73]

Gore-Tex® Solid barrier, expanded Gore & Associates, Delaware, USA Pericardium FDA, CE Yes [74, 75]
polytetrafluoroethylene

Hyaloglide®  Gel barrier, autocrosslinked hyaluronic  Anika Therapeutics, Bedford, USA Tendon CE Yes [78]
acid

Adcon®Gel Gel barrier, porcine gelatine and Bioscompass, Minnesota, USA Tendon CE No
carbohydrate polymer

Tenoglide®  Solid barrier, collagen-GAG Integra lifescience, New Jersey, USA Tendon FDA No

DegraPol® Solid barrier, polyester-urethane DegraPol®, Lainate, Italy Tendon - No

A considerable amount of work has been carried out
to study different polymer materials of natural (i.e., hya-
luronic acid, gelatin, collagen, phospholipids, cellulose,
dextran or icodextrin) or synthetic (i.e., PLA, PEG, PGA,
PCL or PVA) origin to produce barriers that have been
assessed in multiple in vivo and clinical studies [56]. In
addition, the combination and/or employment of mech-
anical barriers in different structures such as hydrogels,
electrospun fibres, films or microspheres offers a wide
range of possibilities that are being investigated [57, 58].
Recently, some studies have also investigated the use of
tissue grafts, such as allogeneic amniotic membranes, in
the prevention of adhesions with discouraging results in
tendons and the peritoneum [59, 60] but more positive
findings in the prevention of intrauterine adhesion re-
currence [61, 62]. The features that a mechanical barrier
must possess will depend on the surgical technique and
the tissue that requires adhesion prevention.

In vivo and clinical trials addressing mechanical bar-
riers are mostly focused on peritoneum and pelvic
surgery, which accounts for a vast number of these stud-
ies [63, 64]. Currently, several products have been ap-
proved by European and United States authorities for
use in abdominal and pelvic surgery, including Sepra-
film® (hyaluronate carboxymethylcellulose), Interceed®

(oxidised cellulose), Adept® (icodextrin 4%), Sprayshield™
(polyethylene glycol) and Hyalobarrier® (autocrosslinked
polymers of hyaluronic acid). Although there was con-
troversy regarding the safety of these products, new sys-
tematic reviews and clinical trials have demonstrated
their safety but modest efficacy [63, 65—67]. Recently,
Seprafilm® has been shown to reduce adhesions in a ran-
domised clinical trial including 30 patients who under-
went open abdominal surgery [68]. Seprafilm® has also
shown effectiveness in major procedures (relaparotomy
or Hartmann’s procedure) [69]. Similarly, Interceed® de-
creased adhesion formation (from 85.5 to 37.5%) in a
clinical study including 38 patients who underwent re-
constructive pelvic surgery [70]. However, in the case of
pelvic and abdominal surgeries where laparoscopy is the
most extended procedure, the application of gel and li-
quid barriers is easier than that of solid barriers, which
are inappropriate for this technique [49]. Hence, the use
of solid barriers is not approved for laparoscopy [8]. In
intrauterine procedures, the use of a balloon, which pre-
vents contact between denuded areas, is also an ex-
tended technique [55]. Regarding liquid or gel barriers,
the safety of the antiadhesive solution Adept® was dem-
onstrated a clinical trial involving 300 patients with
small bowel obstruction [71]. In addition, a study in
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gynaecologic laparoscopy showed a reduction in the for-
mation of adhesions in a clinical trial on 402 patients
(10% reduction in the formation of de novo adhesions,
p =0.029) [72]. However, a more recent double-blinded
randomised trial showed that Adept® had no clinical
effect on adhesion formation, although it confirmed its
safety [73]. Other adhesion barriers are available in
Europe only, including Sprayshield™”, which demon-
strated effective reduction of the formation of adhesions
[74, 75], although a previous work on adhesiolysis with
recurrent adhesions showed its effectiveness in gasless
laparoscopy only [76]. Similarly, in a small trial of 43 pa-
tients, Hyalobarrier® reduced the severity of adhesions,
but there was no evidence regarding the reduction of the
number of adhesion sites [77]. Other studies have been
carried out with different mechanical barriers to battle
peritoneal adhesions [78]. However, no definitive device
has been developed yet.

Regarding the pericardium, several products are avail-
able to prevent adhesion formation after cardiac surgery.
Among resorbable barriers, several different products are
available. REPEL-CV* is a polymer film comprising ethyl-
ene oxide and lactic acid that is approved in Europe and
the United States [79]. This product showed efficacy in re-
ducing the incidence and severity of adhesions in a small
study of paediatric cardiac surgery [80]. Furthermore, a
preclinical study with dogs suggested that polylactic acid
may serve as a scaffold for re-epithelisation, which would
prevent the formation of adhesions [81]. CardioWTrap®, an-
other resorbable polylactide sheet available commercially,
has been tested in preclinical studies. This solid adhesion
barrier limited the formation of cardiac retrosternal adhe-
sions in pigs [82]. Seprafilm® has also been proven to be
safe in cardiac surgery and to reduce the formation of ad-
hesions [83, 84]. Another barrier that consists of a colla-
gen membrane is COVA™ CARD. Compared to
Seprafilm®, this collagen barrier significantly reduced ster-
nal adhesion formation in a preclinical study in sheep
[85]. In addition, its safety and efficacy in reducing peri-
toneal adhesions has been proven recently in a clinical
study of 65 patients [86]. Several clinical studies have also
been carried out with the product CorMatrix®, a porcine
decellularised ECM. Although these studies assessed only
its safety and suitability for cardiac procedures and its cap-
ability to promote MSC differentiation towards cardio-
myocytes in vivo [87], the retrosternal distance was
maintained after 5years [88], which may suggest the ab-
sence of sternal adhesions. Gel or liquid sealants are also
employed for cardiac surgery as resorbable adhesion bar-
riers where Coseal™ is the most extended. This polyethyl-
ene glycol gel decreased adhesion formation in preclinical
[89, 90] and clinical [91, 92] studies. In the case of
non-resorbable barriers, expanded polytetrafluoroethylene
(ePTFE) Gore-Tex® was analysed as an adhesion barrier to
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prevent retrosternal adhesions after cardiac surgical pro-
cedures where it was linked with a reduction in the num-
ber of adhesions [93, 94]. Although substantial effort has
been invested in adhesion prevention after cardiac proce-
dures, modest progress has been achieved in the preven-
tion of pericardial adhesions.

In relation to tendon adhesions, the barriers used to pre-
vent them must also promote gliding to avoid interfering
with tendon movement [95]. To this end, hyaluronic acid
gels seem to be the most promising option, although posi-
tive results have been mostly observed in preclinical studies
since the clinical findings have produced limited and mod-
erate results [53, 96]. One example of a commercially avail-
able product based on hyaluronic acid is Hyaloglide®, a
highly purified auto-cross-linked hyaluronic acid gel. Hyalo-
glide® was tested in a clinical trial on 45 patients undergoing
tenolysis in zone II of the flexor tendon. Although the for-
mation of recurrent adhesions was not assessed, Hyaloglide®
showed a significant improvement in the range of motion
and activity [97]. Adcon’Gel, a porcine gelatine combined
with a carbohydrate polymer, is another gel barrier that
showed promising results in the rabbit Achilles [98]. Solid
barriers, such as Seprafilm® [99], Interceed® [100], Teno-
glide® (a collagen-GAG matrix [101]) and DegraPol (an
electro-spun polyester-urethane tube [102]), have also been
assessed for tendons, mostly in preclinical models. However,
preclinical studies of these products have resulted in prom-
ising but limited clinical data to support their use.

Overall, the success of mechanical barriers in the pre-
vention of adhesions lays principally in their resorption
time and mechanical stability. The duration must be
long enough to act as an effective barrier during healing,
but not long enough to trigger an inflammatory response
and fibrotic deposition. In addition, these products re-
quire sufficient mechanical properties to facilitate their
application and stability during and after surgery [56].

Antiadhesive agents

Another front to battle adhesions is the use of adju-
vants that interfere with the pathways that enhance the
formation of adhesions or that promote those pathways
that prevent their formation (Fig. 1). However, these
pathways are complex and interconnected, which
makes it challenging to find a definitive treatment to
prevent the formation of adhesions. In fact, in the lit-
erature, the use of one extracellular mediator was sug-
gested to be insufficient for the prevention of adhesion
formation, whereas the use of multiple agents may have
a synergetic effect [103, 104]. In addition, the absorp-
tion and diffusion properties of the mesothelium make
it difficult to deliver these agents in a localised manner,
especially in the peritoneum [78]. Another issue with
these agents is their permanency and side effects during
the healing process [105].
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One of the earliest interventions was the employment
of fibrinolytic agents. The discovery of the presence of fi-
brin during adhesion formation stimulated research on a
variety of approaches to attack and resolve it. These ini-
tial studies included fibrinolysin, pepsin, trypsin, plasmin
preparations and PA [7]. The basis of these agents is to
promote fibrinolytic system activity or direct attacks on
fibrin clots, preventing the origin of the formation of ad-
hesions (Fig. 1). Currently, the main fibrinolytic agents
investigated are streptokinase, t-PA and PAI-1. Never-
theless, the results obtained have shown poor perform-
ance in animal studies and side effects such as bleeding
after their use [3, 78, 96, 105].

The control of local inflammation is another strategy that
has been researched to develop antiadhesion agents. In-
flammation is tightly associated with coagulation, fibrin de-
position and consequently, with adhesions (Fig. 1). Thus, it
is believed that a reduction in inflammation can attenuate
adhesion formation. Hyaluronic acid has already been dis-
cussed as a mechanical barrier. However, hyaluronic acid
must also be considered as an antiadhesive agent due to its
anti-inflammatory properties and dissolutive effect on fibrin
[56]. Although hyaluronic acid presents ideal properties as
an antiadhesion material, the rapid resorption of hyaluronic
acid represents a limitation for its use to prevent adhesion
formation. Thus, strategies to extend its endurance in the
body, such as crosslinking, are being studied to increase its
antiadhesion properties. Other anti-inflammatory drugs
have been tested in the peritoneum [78], pericardium [3]
and tendon [96] to prevent adhesions. Examples of the
studied agents include ibuprofen [106], celecoxib [107], res-
veratrol [108] or pirfenidone [109]. These agents target
molecules that regulate the inflammation cascade, such as
COX-1 and COX-2, in the case of non-steroidal
anti-inflammatory drugs, or inflammatory cytokines, such
as TGF-B or TEN-q, in the case of resveratrol or pirfeni-
done. Although the observed results seem promising in
preclinical models, their employment as antiadhesive agents
has not been evaluated clinically, and they pose an increase
in the risk of undesired side effects [110].

Further strategies are based on the use of agents that
limit cellular proliferation by preventing DNA replica-
tion, thus preventing fibroblasts from expanding and
forming adhesions. Agents that present these character-
istics include mitomycin-C, which has been demon-
strated to reduce adhesions in a rabbit pericardial model
[111], or 5-fluoroacil, which also reduced adhesions in
the flexor tendon in chickens [112]. However, the side
effects of these drugs still represent a crucial limitation
for their use as antiadhesive agents.

Oestrogen is a hormone produced in the ovaries that
plays a crucial role in endometrium development; thus,
it could have a potential effect on the prevention of
intrauterine adhesion formation. However, the use of
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oestrogen after hysteroscopy has not been demonstrated
to provide significant positive effects [55]. Alternatively,
oestrogen seems to be effective for the treatment of
women with intrauterine adhesions, although combin-
ation with other systems that provide sustained release
could improve patient outcomes [113].

Other methods, including anticoagulants (heparin), anti-
oxidants (vitamin C) or neutralising antibodies for fibrino-
lytic inhibitors and inflammatory cytokines [114], have
also been investigated. Although some of these agents
showed positive results in animal studies, no conclusive
data supporting their efficacy have been reported. Not-
withstanding, the use of combined therapies that merge
mechanical barriers and antiadhesive agents may support
a promising approach to prevent the formation of adhe-
sions in different surgeries. Some examples that have been
investigated include the combination of Interceed® and
heparin [115], which showed no improved efficacy with
respect to any treatment alone in humans, or Seprafilm®
combined with vitamin E, which showed similar results
[116]. Other investigations have shown only limited re-
sults or modest improvements in animal studies [78].

Recent advances in molecular biology have also en-
abled new strategies adhesion prevention, where. Gene
therapy represents a promising alternative or comple-
mentary approach. In the peritoneum, some examples of
these strategies include the delivery of tPA genes to pro-
mote fibrinolysis with transgene viral vectors or the use
of small interfering RNA (siRNA) to decrease the levels
of hypoxic genes (HIF-1a) or decrease the action of fi-
brinolysis inhibitors (PAI-1) [114]. These strategies have
shown moderate results. Similarly, the transfer of the
HGF gene, which promotes mesothelial regeneration, by
a viral vector showed a moderate reduction in peritoneal
adhesions in a rat model [117]. Recent attempts in gene
therapy that target adhesion formation in tendons have
also employed adenoviral vectors [118] or antisense oli-
gonucleotides [119] to inhibit the action of TGF-p with
promising results. However, the presence of side effects
indicates the need for a better understanding of the
pathways where these molecular targets are involved.

The use of antiadhesive adjuvants offers great potential
in the battle against adhesions, and their combination with
mechanical barriers or sustained release platforms could
enhance their effect and overcome their limitations. More
research is needed to assess whether these agents are safe
and efficient at preventing postsurgical adhesions alone or
in combination with mechanical barriers. Particularly,
more clinical trials are required to prove their safety and
efficiency in different surgical procedures.

Physical therapy
Physical therapy after surgery is a supplementary technique
that can improve outcomes and reduce adhesion formation.
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In flexor tendon surgery, clinicians believe that the early
motion of the digits prevents the formation of adhesions
with adequate physical therapy; however, the state and
strength of the tendon after surgery may limit the applica-
tion of such therapy [120]. Early motion eliminates adhe-
sions by physical contact due to the gliding of the tendon
[121], preventing the settlement of adhesions and produc-
tion of more fibrotic tissue.

Some studies in abdominal surgery indicate that man-
ual therapy could be beneficial for adhesion prevention
after surgery. Recently, in an in vivo study, Bove et al
showed that manual therapy after abdominal surgery at-
tenuates the formation of adhesions in rats [122]. The
authors suggested a mechanism similar to that in ten-
dons; the motion of organs disrupts initially formed ad-
hesions of deposited fibrin, preventing their settlement.
Additionally, the authors showed a decrease in arginase
and CD86 expression by macrophages in treated rats,
suggesting the inhibition of the trophic switch of im-
mune cells that subsequently inhibited the activation of
fibroblasts. The inhibition of adhesions by visceral mo-
bilisation was previously suggested by the same author
[123]. In humans, manual therapy is employed as a con-
servative treatment for small bowel obstruction because
it promotes its kinetics, but studies that prove the effect
of physical therapy on adhesion prevention have been
carried out in vivo only. Since the results obtained in
vivo seem to prove that physical therapy is beneficial to
prevent adhesions, it could represent a potential comple-
mentary treatment in clinics.

Conclusion

Post-surgical adhesions still represent a major complica-
tion in most surgeries, with a particular impact on pro-
cedures in the peritoneum, uterus, pericardium and
tendon where they may result in a serious setback for
patients in terms of outcomes, causing pain, reoperation
and tissue dysfunction. Adhesions occur due to an im-
balance between fibrin deposition during coagulation
and fibrin resolution directed by the fibrinolytic system
where both systems maintain a tight relationship with
inflammation. This imbalance is triggered by a disrup-
tion of the mesothelial/epithelial layer produced by sur-
gery, irritation or inflammation.

Current research on therapies to prevent the formation
of adhesions focuses on the use of mechanical barriers
and antiadhesive adjuvants. Although serious efforts have
been invested, limited positive results have been obtained
in the prevention of adhesions, and these results have
mostly been shown in animal models. Therefore, further
efforts to understand and develop strategies against the
formation of adhesions are needed. The use of combined
strategies that involve mechanical barriers, adjuvants such
as anti-inflammatories or hormones, and targeted gene
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therapy appears to be a promising option. To this end,
carrying out blind randomised clinical trials is necessary
to assess the safety and confirm the efficacy observed in
animal trials of new therapies aimed at addressing the for-
mation of postsurgical adhesions. In addition, the pursuit
of new therapies must be synchronised with the develop-
ment of effective surgical techniques that minimise the
risk of their formation.
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