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Abstract

Magnetic resonance imaging (MRI) is an inherently slow imaging modality, since it acquires multi-dimensional k-
space data through 1-D free induction decay or echo signals. This often limits the use of MRI, especially for high
resolution or dynamic imaging. Accordingly, many investigators has developed various acceleration techniques to
allow fast MR imaging. For the last two decades, one of the most important breakthroughs in this direction is the
introduction of compressed sensing (CS) that allows accurate reconstruction from sparsely sampled k-space data.
The recent FDA approval of compressed sensing products for clinical scans clearly reflect the maturity of this
technology. Therefore, this paper reviews the basic idea of CS and how this technology have been evolved for
various MR imaging problems.
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Background
Magnetic resonance imaging (MRI) exploits the nuclear
magnetic resonance (NMR) phenomena to enable high
contrast imaging. Since the first observation of NMR ab-
sorption in a molecular beam in 1938, the main research
thrust was to understand and utilize the NMR phenom-
ena for spectroscopy applications. Then, Lauterbur in-
troduced in 1973 the gradient field to encode the spatial
origin of the radio waves emitted from the nuclei of the
object. This breakthrough allowed for multi- dimen-
sional imaging by NMR physics.
The idea of Lauterbur can be easily understood using

k-space interpretation that describes MR sampling as
Fourier encoding in 2D or 3D spaces. Specifically, data
collected by an MRI scanner are samples of the spatial
Fourier transform of an object image. Hence, in order to
obtain an image without aliasing artifacts, k-space sam-
ples need to satisfy the Nyquist sampling criterion.
Despite this close link to signal sampling theory, until

the first demonstration of the sensitivity encoding
(SENSE) technique by Prussemann [1], MR imaging was
not considered as an important research topic for signal
processing. Specifically, Prussemann et al. [1] showed
that spatial diversity information from coil sensitivity

maps have additional information that can be exploited
for fast signal acquisition. Furthermore, Sodickson et al.
[2] proposed the simultaneous acquisition of spatial har-
monics (SMASH). These works gave a birth of parallel
imaging and iterative reconstruction methods, and has
resulted in a flurry of novel ideas and algorithms, includ-
ing Generalized Autocalibrating Partially Parallel Acqui-
sitions (GRAPPA) by Griswold [3] and k-t space method
for cardiac imaging such as [4–9].
The common theme in these approaches is that the

data redundancy can be exploited to reduce the required
sampling rate. Because redundant data can be compactly
represented in some transform domains, it is also closely
related to the concept of “sparsity”. Originally investi-
gated by Bresler and his students for on- the-fly Fourier
imaging [10, 11], the sparsity regularization has become
the main workhorse in modern accelerated MRI re-
searches thanks to the introduction of the compressed
sensing theory [12, 13]. Ever since the first demonstra-
tion of compressed sensing MRI by Lustig et al. [14, 15],
the compressed sensing MRI has become the essential
tools in modern MR imaging researches. In this paper,
we will review these ideas in more detail.
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Main text
MR forward models
Before we introduce the concept of compressed sensing
MR, we begin with the discussion of MR forward model.
Mathematically, the forward model for k-space measure-
ment can be described by.

biðkÞ ¼
Z

γiðrÞe− j2πkT rdr; i ¼ 1;…;C; ð1Þ

where r ∈ R^d and k ∈ Rd, d = 2, 3 denote the image do-
main and k-space coordinates, respectively, C is the
number of the coil and the i-th coil image γi is given by

γi rð Þ ¼ ν rð Þsi rð Þ ð2Þ
Here, ν(r) denotes the contrast weighted bulk

magnetization distribution, and si(r) is the corresponding
coil sensitivity of the i-th coil. Although the expression may
give an impression that the measurement is two- or three-
dimensional, this is indeed originated from a 1-D measure-
ment since the k-space trajectory is a function of time, i.e.
k:= k(t), and we acquire one k-space sample at each time
point t. This makes the MR imaging inherently slow, since
we need to scan through a 3-D object via 1-D trajectories.
Dynamic MRI is another important MR technique to

monitor dynamic processes such as brain hemodynamics
and cardiac motion. Among the various forms of dy-
namic MR modeling, here we mainly focus on the k-t
formulation. Specifically, consider a discrete imaging
equation for cartesian trajectory for simplicity. Because
the samples along the readout direction are fully sampled,
most of the dynamic MR formulation is applied separably
after taking the Fourier transform along the read- out dir-
ection. More specifically, let γ(s, t) denote the unknown
image content (for example, proton density, T1/T2
weighted image, etc.) on the spatial coordinate s along the
phase encoding line at time instance t. Then, the k-t space
measurement b(k, t) at time t is given by

bðk; tÞ ¼
Z

γðs; tÞe− j2πksds ð3Þ

where γ(s, t) is the spatio-temporal image which may be
weighted by coil sensitivity map for the case of parallel
imaging.
Throughout the paper, for simplicity we often use the

operator notation for (1):

bi ¼ F ½Si�ν; i ¼ 1;⋯;C;

where [Si] is a diagonal operator comprised of the
i-th coil sensitivity. Similarly, we use operator nota-
tion for (3).

b ¼ Fγ ð4Þ

or

bi ¼ Fγ i; i ¼ 1;⋯;C ð5Þ

for the case of parallel imaging.

Compressed sensing theory
Performance guarantees
Compressed sensing (CS) theory [12, 16, 17] addresses
the accurate recovery of unknown sparse signals from
underdetermined linear measurements and has become
one of the main research topics in the signal processing
area for the last two decades [18–23]. Most of the com-
pressed sensing theories have been developed to address
the so-called single measurement vector (SMV) prob-
lems [12, 16, 17]. More specifically, let m and n be posi-
tive integers such that m < n. Then, the SMV
compressive sensing problem is given by

P0ð Þ : minimize xk k0
subject to ‖y � Ax‖ < ϵ;

ð6Þ

where y ∈ R^m, A ∈ R^m\×n, x ∈ R^n, and ϵ denotes
the noise level. (P0) implies that the solution favours the
sparsest solution.
Since (P0) requires a computationally expensive com-

binatorial optimization, greedy methods [24], reweighted
norm algorithms [25, 26], or convex relaxation using the
l1 norm [12, 27] have been widely investigated as alter-
natives. In particular, the convex relaxation approach ad-
dresses the following l1 minimization problem:

P1ð Þ : minimize xk k1
subject to ‖y � Ax‖ < ϵ;

ð7Þ

One of the important theoretical tools of CS is the
so-called restricted isometry property (RIP), which en-
ables us to guarantee the robust recovery of certain in-
put signals [17]. More specifically, a sensing matrix
A ∈ Rm�n is said to have a k- restricted isometry prop-
erty (RIP) if there is a constant 0 ≤ δk < 1 such that

1−δkð Þ‖x‖2≤‖Ax‖2≤ 1þ δkð Þ‖x‖2:

for all x ∈ R^n with ||x||0 ≤ k. It has been demon-
strated that δ2k <

ffiffiffi
2

p
−1 is sufficient for l1/l0 equivalence

[12]. For many classes of random matrices, the RIP con-
dition is satisfied with high probability if the sampling
pattern is incoherent and the number of measurements
satisfies m ≥ ck log(n/k) for some constant c > 0 [17].
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Optimization approaches
In practice, the following unconstrained form of
optimization problem is often used:

min
x

1
2

y−Axk k2 þ λ Ψxk k1 ð8Þ

where y is noisy measurement, λ is the regularization
parameter, and Ψ refers to an analysis transform such
that Ψx becomes sparse. Note that for the special case
of Ψ = I, (8) is reduced to (P1).
One of the technical issues in solving (8) is that the

cost function is not smooth at Ψx = 0, which makes the
corresponding gradient ill-defined. This leads to the de-
velopment of various techniques, which are culminated
as the new type of convex optimizaton theory called
proximal optimization [28]. For example, the popular
op- timization methods such as forward-backward split-
ting (FBS) [29], split Bregman iteration [30], alternating
directional method of multiplier (ADMM) [31],
Douglas- Rachford splitting algorithm [32], and
primal-dual algorithm [33] have been devel- oped to
solve compressed sensing problems. However, the com-
prehensive coverages of these techniques deserves an-
other review paper, so in this section we mainly review
the ADMM algorithms which have been extensively
used for compressed sensing MRI ever since its first
introduction to compressed sensing MRI [34].
More specifically, we convert the problem (8) to the

following constraint problem:

min
γ;u

1
2

y−Aγk k2 þ λ uk k1 ð9Þ

subject to

u ¼ Ψγ: ð10Þ
Then, the associated ADMM is given by

γ kþ1ð Þ ¼ arg min
x

1
2

y−Aγk k2 þ μ
2

ζ kð Þ þΨγ−u kð Þ
��� ���2

u kþ1ð Þ ¼ arg min
u

λ uk k1 þ
μ
2

ζ kð Þ þΨγ kþ1ð Þ−u
��� ���2

ζ kþ1ð Þ ¼ ζ kð Þ þ x kþ1ð Þ−u kþ1ð Þ;

Now, each step of ADMM has a closed-form solution.
Algorithm 1 summarises the resulting ADMM iteration,
where shrink1 denotes the soft-tresholding:

shrink1 x; τð Þ ¼ sgn xð Þ max 0; jxj−τf g; ð11Þ
for the threshold value τ > 0.

In addition to the analysis prior in (8), the total vari-
ation (TV) penalty has been also extensively used for
imaging applications, because the finite difference
operator

can sparsify smooth images. Specifically, the TV mini-
misation problem assumes the following form:

min
x

1
2

y−Axk k2 þ λTV xð Þ; ð12Þ

where T V (x) is given by

TV xð Þ ¼ ∇xk k1;p; ð13Þ

where ‖∙‖1, p, p = 1, 2 deotes the l1/lp-mixed norm. In
d-dimensional space (e.g. d = 2 for images), the discre-
tized implementation can be defined as

∇xk k1;p ¼
Xn

i¼1
∇x ið Þk kp

where ∇x(i) ∈ Rd denotes the gradient of x at the i-th
coordinate and n denotes the number of discretizated
samples.
In order to apply ADMM for (12), we need to focus

on the primal formulation of the total variation penalty:

TV xð Þ ¼ ∇xk k1;p ¼
Xn

i¼1
∇x ið Þk kp ð14Þ

Now, we define a splitting variable u(i) =∇x(i) ∈ Rd.
Then, the constraint opti- mization formulation is given by

min
x; u ið Þf gni¼1

1
2

y−Axk k2 þ λ
Xn

i¼1
u ið Þk kp ð15Þ

Subject to u ið Þ ¼ ∇x ið Þ; i ¼ 1;⋯; n ð16Þ
Then, the associated ADMM is given by

x kþ1ð Þ ¼ arg min
x

1
2

y−Axj jj j2 þ η
2

X
i
ζ kð Þ ið Þ þ ∇x ið Þ−u kð Þ ið Þ

��� ���2

u kþ1ð Þ ið Þ ¼ arg min
u ið Þ

λ u ið Þk kp þ
η
2

ζ kð Þ ið Þ þ ∇x kþ1ð Þ ið Þ−u ið Þ
��� ���2
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ζ kþ1ð Þ ið Þ ¼ ζ kð Þ ið Þ þ ∇x kþ1ð Þ ið Þ−u kþ1ð Þ ið Þ
Each step has the closed form expression. Algo-

rithm 2 summarises the TV-ADMM algorithm, where
shrinkvec,2(x) for x ∈ Rd denotes the vector shrinkage
[34]:

shrinkvec;2 x; τð Þ ¼ x
xj j max 0; xj j−τf g; x∈Rd ð17Þ

for the threshold value τ > 0.

Basic MR ingredients for compressed sensing
In order to apply compressed sensing theory for specific
imaging applications, the unknown signal should be sparse
in some transform domain, and the sensing matrix should
be sufficiently incoherent. This section shows why these
conditions can be readily satisfied in MR imaging, which
is one of the main reasons that allows for successful appli-
cations of CS theory to MR imaging.

Sparsity of MR images
An MR image is rarely sparse in its own. However, one
of the important observations that led to the successful
applications of CS to MR is that the sparsity is closely
related to signal redundancies. This is because redun-
dant signals can be easily converted to sparse signals
using some transforms.
Basically, there are three major directions that have

been investigated in com- pressed sensing MRI: 1) the
spatial domain redundancy, 2) the temporal domain re-
dundancy, and 3) the coil domain redundancy. For ex-
ample, as shown in Fig. 1(a), natural images can be
sparsely represented in finite difference or wavelet trans-
form domain, although the image is not sparse in its
own. This observation is the main idea that allows for
total variation (TV) and wavelet transform approaches
for image denoising, and reconstruction. Accordingly,
TV and wavelets have been the main transforms that
have been extensively used in most of the CS MRI re-
searches. On the other hand, dynamic MR images such

as cardiac cine, functional MRI, and MR parameter map-
ping have significant redundancy along the temporal di-
mension as shown in Fig. 1(b). For example, if the image
is perfectly periodic, then temporal Fourier transform
may be the optimal transform to sparsify the signal.
However, in many dynamic MR problems, the temporal
variations are dependent on the MR physics as well as
specific motion of organs, so the analytic transform such
as Fourier transform may not be an optimal solution,
but more data-driven approaches such as PCA or dic-
tionary learning are better options. Indeed, these obser-
vation leads to dictionary learning approaches that will
be discussed later.
On the other hand, the coil redundancy is somewhat

distinct compared to the spatial- and temporal- domain
redundancy. As shown in Fig. 1(c), the redundancy of
the coil image stems from the underlying common im-
ages, which results in cross- channel redundancies:

s j rð Þγ i rð Þ ¼ si rð Þγ j rð Þ; i≠ j; ∀r ð18Þ
where si denotes the i-th coil sensitivity map and γi is
the coil image. The rela- tionship in (18) is easy to show
since the coil image is given by (2). The main idea of the
classical parallel MRI is to exploit this relationship. Spe-
cifically, the sensi- tivity encoding (SENSE) [1] exploits
the image domain redundancy described in (18), whereas
the k-space domain approaches such as GRAPPA [3] ex-
ploits its dual relationship in the k-space:

ŝ j rð Þ � γ̂ i rð Þ ¼ ŝi rð Þ � γ̂ j rð Þ; i≠ j; ∀r ð19Þ

where ∗ denotes the convolution, and ŝ j , γ̂ j enote the
Fourier transform of sjand γjrespectively. Later we will
describe how these two expressions of the coil dimen-
sional redundancies have been exploited in compressed
sensing MRI.

Incoherent sampling pattern
In compressed sensing MRI, downsampling pattern is
very important to impose the incoherence, but its
realization is limited by MR physics. For example, in the
2-D acquisition, the readout direction should be fully
sampled, so there is only freedom along the phase en-
coding direction in designing incoherence sampling pat-
terns. Figure 2(a)-(c) shows the examples of realizable
sampling patterns that have been exploited in the litera-
ture: a) cartesian undersampling, b) radial trajectory, and
c) spiral trajectory. In particular, the radial and spiral tra-
jectories, which have been studied even before the ad-
vanced of the compressed sensing [35], have more
incoherent radial sampling patterns compared to the
cartesian undersampling.
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On the other hand, if we deal with 3-D imaging or
dynamic imaging, there are more rooms for sampling
pattern design, since there are two dimensional degree
of freedom. Figure 2(d) shows an example of 2-D
random sampling pattern. For the case of wavelet
transform-based sparsity imposing prior, Lustig et al.
[14] showed that the incoherence can be optimized by
generalizing the notion of PSF to Transform Point
Spread Function (TPSF). Specifically, TPSF measures
how a single transform coefficient of the underlying ob-
ject ends up influencing other transform coefficients of
the measured undersampled object. To calculate the
TPSF, a single point in the wavelet transform space at
the i-th location is transformed to the image space and
then to the Fourier space. Once the corresponding Fou-
rier space data is subsampled by the given downsam-
pling pattern, its influence in the wavelet transform

domain can be calculated by taking inverse transform
followed by the inverse wavelet trans- form. To have the
best incoherence property, the side of TPSF should be as
small as possible, such that the side lobe contribution
can be removed by shrinkage op- eration. This was used
as the main criterion for sampling pattern design.

Historical milestones
The earliest application of the compressed sensing for
MRI was done by Lustig and his collaborators [14]. The
application of CS to dynamic MRI was pioneered by
Jung et al. [18] and Gamper et al. [36], which was later
significantly improved by Jung et al. [20]. The positive
results of these earlier works have resulted in flurry of
new ideas in static and dynamic MRI.
In terms of combining CS with parallel imaging, the

first application for static imaging was done by Block et

Fig. 1 Various types of sparsity in MRI. (a) Sparsity from spatial domain redundancy, (b) Sparsity from temporal redundancy, and (c) sparsity from
mu.ti-channel redundancy

Fig. 2 Various under-sampling patterns: (a) Cartesian undersampling, (b) radial undersampling, and (c) spiral undersampling
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al. [37] by combining total variation penalty and parallel
imaging; and by Liang et al. [38] in more general form
using SENSE. In dynamic imaging, the works by Jung et
al. [18] and Feng et al. [39] are among the first that com-
bine the SENSE type parallel imaging with the k-t do-
main compressed sensing. Combination with CS and
parallel imaging using GRAPPA type constraints was
pioneered by Lustig et al. [40]. Coil compression tech-
niques have been also investigated to reduce the number
of coils for CS reconstruction [41]. Feng et al. [42] later
combined compressed sensing, parallel imaging, and
golden-angle radial sampling for fast and flexible dynamic
volumetric MRI, which has been approved for clinical use.
Aside from the standard l1 and TV penalty, several in-

novative sparsity inducing penalty have been used for
compressed sensing MRI. For example, Trzasko et al.
[43, 44] proposed a direct l0 mimimization approaches,
whereas Knoll et al. [45, 46] proposed a generalized total
variation approaches, and Sung et al. [47] combined the
approximate message passing algorithm with parallel im-
aging. This idea was then extended to the dictionary
learning [20, 48, 49] and motion compensation [20, 50].
Then, the idea of low-rank regularization was soon in-
troduced [49, 51–53] thanks to the theoretical advances
by Candes et al. [54]. The low-rank idea was further ex-
tended to structured low-rank approach for parallel im-
aging [55] and single coil imaging with the finite support
[56]. The duality between the compressed sensing and
low-rank Hankel matrix approaches were discovered by
Jin and his colleagues [57–60] and Ongie et al. [61]. In
particular, the unified framework for compressed sensing
and parallel MRI in terms of low-rank Hankel matrix ap-
proaches was presented by Jin et al. [57] and its theoret-
ical performance guarantees was also given in [62].
In the following, we provide more detailed reviews of

these historical milestones in compressed sensing MRI.

Basic formulation of compressed sensing MRI
Although some MR images such as angiograms are
already sparse in the pixel representation, more compli-
cated images are rarely sparse, but only have a sparse
representation in some transform domain, for example,
in terms of spatial finite- differences or their wavelet co-
efficients. Based on this observation, Lustig et al. [14]
proposed the first compressed sensing MRI using spatial
domain wavelet transform as a sparsifying transform.
More specifically, the problem is formulated as

min
x

Ψγk k1 ð20Þ

subject to y−DFγk k2 < ϵ

where ‖∙‖1 denotes the l1 norm, F is the Fourier trans-
form, γ denotes the 2-D complex image, Ψ is a either

finite difference or spatial wavelet transform, D is the
downsampling pattern, and y is the downsampled
k-space measurement. Eq. (20) was solved using a non-
linear conjugate gradient method.
The resulting optimization algorithms are, however,

computational expensive. For cartesian sampling trajec-
tory, this problem can be overcome as follows. Specific-
ally, the image update step for (20) in ADMM
implementation can be summarized as

F�D�DF þ μIð Þγ ¼ F�D�y−μΨ� ζ kð Þ−u kð Þ
� �

;

which is computationally expensive due to the matrix
inverse to obtain γ. Instead of using a direct matrix in-
verse, by multiplying the Fourier transform F to both
sides, we have

D�Dþ μIð Þγb¼ D�yþ μFΨ� u kð Þ−ζ kð Þ
� �

where γb¼ Fγ. Note that a diagonal matrix D*D consist-
ing of ones and zeros. The ones are at those diagonal en-
tries that corresponds to the sampled locations in the
k-space. Let Ω denote the sampled location. Then,

γb kþ1ð Þ ¼ PΩ

D�yþ μFΨ� u kð Þ−ζ kð Þ
� �

1þ μ

0
@

1
Aþ PΩc FΨ� u kð Þ−ζ kð Þ

� �� �
;

ð21Þ
where PΩ and PΩc denotes the projection on the sam-
pling location Ω and its com- plement Ωc, respectively.
Then, the image update γ(k + 1)can be simply done by tak-
ing the fast Fourier transform (FFT).
The first experimental demonstration by Lustig et al.

[14] clearly confirmed the efficiency of the compressed
sensing algorithm, which has led to many other CS ap-
proaches using various sparsifying transform, and
optimization algorithms, etc. For example, to deal with
several hyperparameters to trade off between sparsity
and data fidelity terms. Many research efforts have been
made to quantity such trade- off, provide different forms
of reconstruction, even to propose hyperparameter free
reconstruction method [63–70].

Advanced formulation for compressed sensing MRI
Non-Cartesian compressed sensing MRI
Compressed sensing with non Cartesian sampling has
been also extensively stud- ied, since they are really a
great combination given the sampling behavior of non
Cartesian sampling schemes and the incoherence re-
quirement in compressed sens- ing reconstruction.
Aside from the radial and spiral sampling patterns dis-
cussed before, the works in [71–83] have fo- cused on
designing better sampling trajectories with good inco-
herent properties. For example, Haldar et al. [82] and
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Puy et al. [83] proposed random phase encod- ing
scheme to maximize the incoherency of the sensing
matrix. However, one of the main technical issues asso-
ciated with non-cartesian compressed sensing MRI is
that the fast reconstruction trick shown in (21) cannot
be used, which increases the overall computational time.

Combination of parallel imaging with CS
Recall that parallel MRI (pMRI) [1, 3] exploits the diver-
sity in the receiver coil sen- sitivity maps that are multi-
plied by an unknown image. This provides additional
spatial information for the unknown image, resulting in
accelerated MR data acquisition through k-space sample
reduction. Because the aim of the parallel imaging and
CS approaches is similar, extensive research efforts have
been made to syner- gistically combine the two for fur-
ther acceleration [18, 20, 38, 40, 84].
One of the most simplest approaches can be a SENSE

type approach that explic- itly utilizes the estimated coil
maps to obtain an augmented compressed sensing prob-
lem [18, 20, 38, 84]. More specifically, if the coil sensitiv-
ity is known and given by the sensitivity[Si], i = 1, ⋯,
C,then the SENSE type compressed sensing MRI prob-
lem can be formulated as

min
x

1
2

XC

i¼1
bi−DF Si

� �
x

�� ��2 þ λ Ψxk k1 ð22Þ

The optimization framework is the standard
optimization framework under sparsity constraint, so
proximal optimization algorithms can be used to solve
this problem.
On the other hand, l1-SPIRiT (l1-iTerative Self-consistent

Parallel Imaging Re- construction) [40] utilizes the
GRAPPA type constraint as an additional constraint for a
compressed sensing problem:

min
x

‖Ψx‖1

subject to ‖bi−DF ½Si�x‖2 < ϵ; i ¼ 1;…;C

x ¼ Mx
ð23Þ

where M is an image domain GRAPPA operator. In both
approaches, an accurate estimation of coil sensitivity
maps or GRAPPA kernel is essential to fully exploit the
coil sensitivity diversity. To address this problem, Uecker
et al. [85] developed a novel eigen space method to ex-
tract the coil sensitivity maps directly from the k-space
data, which is one of the most popular methods widely
used by MR researchers.

Blind compressed sensing MR using dictionary learning
Blind compressed sensing approaches attempted to sim-
ultaneously reconstruct the underlying image as well as

the sparsifying transform from highly undersampled
measurements. Ravishankar and his colleagues pioneered
two distinct approaches - synthesis dictionary learning
[48] and analysis transform learning [86] - when the
underlying sparsifying transform is unknown a priori.

Synthesis dictionary-based BCS
More specifically, let Pj, j = 1 …, N represents the oper-
ator that extracts a m- dimensional patch as a vector Pjx
∈ Cm from the image x, where N denotes the number of
patches. Then, dictionary learning is to find the un-
known dictionary D ∈ Rm�Q and the corresponding
sparse coefficient matrix C ∈ Cm�n such that Y = DC,
where Y = [P1x P2x…, PNx]
The synthesis model allows each patch Pjx to be ap-

proximated by a linear combina- tion Dcj of a small
number of columns from a dictionary D ∈ Cn�K , where
cj ∈ CK is sparse. The columns of the learnt dictionary
(represented by dk, 1 ≤ k ≤ K) in (P0) are additionally
constrained to be of unit norm in order to avoid the
scaling ambiguity. The dictionary, and the image patch,
are assumed to be much smaller than the image. This
model can be used as a signal model, and Ravishankar et
al. [48] proposed the following patch-based dictionary
learning regularizer:

R xð Þ ¼ min
D;C

XN

j¼1
P jx−DC j

�� ��2; s:t; dik k
¼ 1; ∀i; C j

�� ��
0≤k∀ j ð24Þ

where Cj and dj denotes the j-th column of C and D, re-
spectively. Then, the associated BCS formulation is given by

P0ð Þ : min
x;D;C

v Ax−bk k22

þ
XN
j¼1

P jx−DC j

�� ��2; s:t; dik k

¼ 1∀i; C j

�� ��
0≤s∀ j ð25Þ

where A: = DF denotes the downsampled Fourier
transform.
To address the optimization problem (P0), Ravishankar

et al. [48] employed the following two-step alternating
minimization algorithm. First, the following mini- miza-
tion problem is solved by fixing x:

min
D;C

XN
j¼1

P jx−DC j

�� ��2; s:t; dik k

¼ 1∀i; C j

�� ��
0
≤K∀ j ð26Þ

The K-SVD algorithm [87] was used to learn the dic-
tionary. For a given dictionary
D, the image update can be done by
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min
x

v Ax−bk k22 þ
XN

j¼1
P jx−DC j

�� ��2n o
ð27Þ

These steps are alternated until convergence. The dic-
tionary learning MRI have shown superior image recon-
structions for MRI, as compared to non-adaptive
compressed sensing schemes.

Sparsifying transform-based BCS
However, the BCS Problem (P0) is both non-convex and
NP-hard. Approximate iterative algorithms for (P0) typ-
ically solve the synthesis sparse coding problem re- peat-
edly, which makes them computationally expensive. In
order to overcome some of the aforementioned drawbacks
of synthesis dictionary-based BCS, Ravishankar et al. [86]
proposed to use the sparsifying transform model in this
work. Sparsify- ing transform learning has been shown to
be effective and efficient in applications, while also enjoy-
ing good convergence guarantees. Specifically, they used
the follow- ing transform learning regularizer:

R xð Þ ¼ min
W ;C

XN

j¼1
WPjx−C j

�� ��2
þ λQ Wð Þ; s:t: Bk k0≤s ð28Þ

where W ∈ C^{m\× m} denotes the unknown transform,
the function Q(W) is a regualizer for the transform given
by

Q Wð Þ ¼ − log detWj j þ 0:5 Wk k2F
The − log |detW| penalty eliminates degenerate solu-

tions such as those with repeated rows. The ‖W‖Fpenalty
helps remove a scale ambiguity in the solution.
Then, with additional constraint ‖x‖ ≤ E, the overall

optimization problem is given by

P1ð Þ : min
x;W ;C

v Ax−bk k22 þ
XN
j¼1

WPjx−C j

�� ��2
þ λQ Wð Þ; s:t: Ck k0≤s; xk k≤E; ð29Þ

where A = DF again denotes the downsampled Fourier
transform. One of the important advantages of (P1) is
that there exists a closed-form update for W, so the
computationally expensive dictionary learning step can
be avoided.

K-t methods for compressed sensing dynamic MRI
Dynamic MRI is a technique to acquire temporally vary-
ing MR sequences such as cardiac cine, perfusion,
time-resolved angiography, functional MRI, etc. In dy-
namic MRI, there exists significant redundancies along
the temporal directions, which can be extensively stud-
ied in various compressed sensing approaches.

k-t SPARSE
The k-t SPARSE by Lustig et al. [88] is an earliest ver-
sion of compressed sensing dynamic MRI. Recall that
the k-space measurement b(k, t) at time t is given by

b k; tð Þ ¼
Z

γ s; tð Þe− j2πksds ð30Þ

Another application of the Fourier transform along the
temporal direction

γ s; tð Þ ¼
Z

p s; fð Þe− j2πftdf ; ð31Þ

results in the following 2-D Fourier relationship:

b k; tð Þ ¼ ∬p s; fð Þe− j2π klþftð Þdsdf ; ð32Þ

where ρ(s, f ) denotes the temporal Fourier transform of
γ(s, t).
Note that p(s, f ) is usually sparse because the periodic

motions from heart or slow varying motions from fMRI
can be easily sparsified using the temporal Fourier trans-
form. Accordingly, the k-t data can be represented as
mapping from the spatial- temporal image:

b ¼ Aρ ð33Þ

where A: = DF and D is a k-t downsampling pattern,
and F now becomes a 2D Fourier transform. In
addition to the temporal Fourier transform, the au-
thors in [88] used the wavelet transform in the spatial
dimension to exploit the spatial redundancy. Then,
k-t SPARSE is formulated based on the following
optimization problem:

min
γ

b−DFγk k22 þ λ Wγk k1 ð34Þ

where W denotes the spatial wavelet transform,
respectively.

K-t FOCUSS
Preliminary CS dynamic MRI approaches [36, 88]
were seemingly different from the classical k-t ap-
proach such as k-t BLAST/SENSE [5]. One of the
most impor- tant contributions of the k-t FOCUSS by
Jung et al. [18, 20] was to reveal that the compressed
sensing dynamic MRI is not very different from the
classical k-t approaches, but rather it can be obtained
by a very simple modification of the classical k-t
BLAST/SENSE to ensure significant performance
improvement.
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More specifically, rather than using wavelet transform,
k-t FOCUSS exploited the x-f domain sparsity. Then, a
standard compressed sensing formulation would be:

min
ρ

b−DFρk k22 þ λ ρk k1 ð35Þ

to enforce the sparseness in x-f image ρ. However,
there exists two additional novel- ties in the k-t
FOCUSS. First, rather than directly enforcing the sparse-
ness of the x-f image, the k-t FOCUSS further sparsifies
the x-f image using the initial estimate.
Specifically, let ρ0 be the predictable initial estimate of

ρ. Then, the residual

x ¼ ρ−ρ0 ð36Þ
should be much more sparse than the original

spatio-temporal image. Second, rather than directly
using the l1 minimization, k-t FOCUSS employed the
reweighted norm approaches. This results in the follow-
ing equivalent minimization problem:

min
x;v

b−Aρ0−Ax
�� ��2

2 þ λ
1
2

Xn

i¼1

xi2

vi
þ vi

� 	
; ð37Þ

Then, the normal equations with respect to x and v
are given by

−
xi2

vi2
þ 1 ¼ 0

−FH b−Aρ0−Ax

 �þ λV −1x ¼ 0

where V is a diagonal matrix whose i-th diagonal elem-
ent is vi. This result in the following FOCUSS iteration:

ρ nþ1ð Þ ¼ ρ0þW nð ÞAH AHW nð ÞAþ λI
� �−1

v−Aρ0

 � ð38Þ

where the weighting matrix is given by

W nþ1ð Þ ¼ diag x nþ1ð Þ�� ��12� �
:

One of the most powerful observations in [18, 20] was
that the first iteration of (38) has very similar form to
the classical k-t BLAST/SENSE algorithm, except the
power factor of weighting matrix. This observation led
to an innovative idea to con- vert k-t BLAST/SENSE to
compressed sensing approach. More specifically, by
using incoherence sampling patterns, multiple iterations
and correct weighting factor for the diagonal matrix, the
authors of k-t FOCUSS [18, 20] clearly demonstrated
the performance improvement. This observation

suggested that the improvement by the classical k-t algo-
rithms such as k-t BLAST/SENSE [5] was not from the
Bayesian perspective as the original authors of [5] had
claimed, but indeed is originated from exploiting the
sparsity int the spatio-temporal domain [18, 20]. Further-
more, by simply modifying the weight factor and sampling
patterns, several additional iter- ation can significantly im-
prove the performance of k-t BLAST/SENSE.
Another powerful aspect of k-t FOCUSS was that the

idea can be easily extended to exploit the sparsity in
other transform domains. For example, the residual step
in (36) can be interpreted as sparsity promoting step by
subtracting the temporal mean images. Thus, Jung et al.
[20] proposes motion estimated and compensated modi-
fication of k-t FOCUSS to make the residual signal
much sparser. More specifi- cally, rather than subtract-
ing the temporal mean values, they subtracted the mo-
tion estimated frame. Note that motion estimation and
compensation (ME/MC) is an essential step in video
coding that uses motion vectors to exploit the temporal
re- dundancies between frames [89, 90]. In order to em-
ploy ME/MC within dynamic MRI, there are several
technical issues to address. First, at least one reference
frame is required. This issue can be easily resolved if we
acquire fully sampled data in one frame as often done in
dynamic MRI. The main technical difficulty, however,
comes from the existence of the low quality current
frame. Fortunately, this issue can be addressed using an
additional reconstruction step before the ME/MC [20].
In addition, the spatio-temporal signals can be further

sparsified using data-driven transform:

ρ ¼ Dc;

where D denotes the learned temporal dictionary based
from the images, whereas c denotes the coefficients.
Then, the imaging problem can be formulated as

min
c;v;D

b−Aρ0−ADC

�� ��2
2 þ λ

1
2

Xn

i¼1

Ci
2

vi
þ vi

� 	
; ð39Þ

For example, in order to find the temporal basis that
can sparsify ρ, Jung et al. [18, 20] performed the the sin-
gular value decomposition (SVD) after the image recon-
struction, then the new dictionary is used to estimate
the new coefficients. This procedure is closely related to
the partial separable function (PSF) [91] and k-t SLR (k-t
sparse and low-rank decomposition) [49], which will be
reviewed soon.

Partially separable function (PSF) approach
In the PSF model by Liang et al. [91], the k-t sam-
ples are assumed to be decomposed in the following
form
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b k; tð Þ ¼
XL
l¼1

Ψl kð Þ∅l tð Þ

for some data dependent spectral and temporal basis

function fΨlðkÞgLl¼1 and f∅lðtÞgLl¼1 . Thanks to the par-
tially separable assumption, the so-called Casorati
Matrix B for the fully sampled k-t data given by

B ¼
b k1; t1ð Þ ⋯ b k1; tnð Þ

⋮ ⋱ ⋮
b km; t1ð Þ ⋯ b km; tnð Þ

2
4

3
5

has at most rank L.
In dynamic CS MRI, many of the k-t samples are miss-

ing and we are interested in finding the missing compo-
nents. Hence, by utilizing the low-rankness of the
Ca-sorati matrix, the missing k-t samples can be esti-
mated using a low rank matrix completion algorithm. In
particular, the authors in [92, 93] proposed the following
matrix factorization approach:

Û ; V̂

 � ¼ arg min

U;V
A UVH

 �

−B
�� ��2 ð40Þ

where A denotes the k-t sampling operator that indicates
the missing samples by 0, and U ∈ Cm�L , V ∈ Cm�L is
used for the low rank matrix factorization B =UV H,
and the optimization is performed for U and V alternat-
ingly by fixing the other matrix using the previous esti-
mate. Because the exact rank of B is not known, the
authors proposed the incremented powerFactorization
(IRFP) algorithm [92], where (40) starts with L = 1 by in-
creasing order with the initialization of the power
factorization of L + 1 from that of L. To avoid an overfit-
ting, the algorithm is terminated as soon as the data fi-
delity is below some threshold values.

K-t SLR: K-t sparse and low rank approach
k-t Sparse and Low Rank Approach (k-t SLR) model by
Lingala et al. [49] is a more systematic way of learning
both basis and sparse coefficients. In this approach, the
spatio-temporal signal ρ(x, t) is first rearranged in a
matrix form

τ ¼
ρ x1; t1ð Þ ⋯ ρ x1; tnð Þ

⋮ ⋱ ⋮
ρ xm; t1ð Þ ⋯ ρ xm; tnð Þ

2
4

3
5 ð41Þ

Then, using the low rank prior, the optimisation prob-
lem can be formulated as

min
Γ

kb−AðΓÞk2 þ λφðΓÞ,

where A: = DF is now a downsampled Fourier transform.
Here, the rank prior is approximated using the general
class of Schatten p-functionals, specified by

φ Γð Þ ¼ Γk kpp ¼
X
i

σpi ;

where {σi} denotes the singular values of Γ.
In dynamic imaging applications, the images in the

time series may have sparse wavelet coefficients or
sparse gradients. In addition, if the intensity profiles of
the voxels are periodic (e.g., cardiac cine), they may be
sparse in the Fourier domain. Based on this observation,
Lingala et al. [49] proposed additional sparsity inducing
penalty in specified basis sets along with the low-rank
property to further improve the recovery rate. Specific-
ally, they chose the 2-D wavelet transform to sparsify
each of the images in the time series, while can be a 1-D
Fourier transform to exploit the pseudo-periodic nature
of motion. Then, the resulting composite minimization
problem can be formulated as

min
Γ

b−A Γð Þk k2 þ λ1 Γk kpp þ λ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXq−1
i¼0

ΦH
i ΓΨi

�� ��2
vuut

������
������
1

ð42Þ

K-space structured low-rank approaches
Basic theory
Compared to the standard compressed sensing ap-
proaches, k-space structured low- rank approaches such
as SAKE [55], LORAKS [56], ALOHA [57, 59, 60] and
GIRAF [61] are relatively new, but has significant poten-
tials in MRI imaging. These ap- proaches are all derived
by the k-space convolution relationship and can be used
for both static and dynamic imaging. So we first discuss
a matrix representation of the convolution. For simpli-
city, we will consider the 1-D notation.
Specifically, consider a fully sampled k-space measure-

ment from the multi-channel coils:

yi ¼ Fγ i; i ¼ 1;⋯;C

where γi denotes the unknown i-th coil images and yi

corresponds to its k-space data. Note that the matrix
representation of a k-space convolution of yi with a
d-tap filter h is given by

zi ¼ C yi

 �

h ð43Þ

where CðyiÞ denotes the convolution matrix constructed
by the vector yi:
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C yi

 � ¼

⋮ ⋮ ⋱ ⋮
yi −1½ � yi 0½ � ⋯ yi d−2½ �
yi 0½ � yi 1½ � ⋯ yi d−1½ �
yi 1½ � yi 2½ � ⋯ yi d½ �
⋮ ⋮ ⋱ ⋮

yi n−d½ � yi n−d þ 1½ � ⋯ yi n−1½ �
yi n−d þ 1½ � yi n−d þ 2½ � ⋯ yi n½ �

⋮ ⋮ ⋱ ⋮

2
66666666664

3
77777777775
ð44Þ

and h¯ denotes a vector that reverses the order of the
elements. If we extract the n − d-rows of the convolu-
tion matrix with n − d > d, we can obtain the following
Hankel structured matrix:

Hd yi

 � ¼

yi 0½ � yi 1½ � ⋯ yi d−1½ �
yi 1½ � yi 2½ � ⋯ yi d½ �
⋮ ⋮ ⋱ ⋮

yi n−d½ � yi n−d þ 1½ � ⋯ yi n−1½ �

2
664

3
775
ð45Þ

By defining Y = [y1,⋯, yC], we can further defined the
extended Hankel matrix

HdjC Yð Þh i;kð Þ ¼ Hd y1

 �

⋯Hd yC

 �� � ð46Þ

In the following, we will explain how these Hankel
structured matrix has been utilised for accelerated MRI.

SAKE
A calibrationless parallel imaging reconstruction method,
termed simultaneous au- tocalibrating and k-space estima-
tion (SAKE), is a data-driven, coil-by-coil recon- struction
method that does not require a separate calibration step
for estimating coil sensitivity information [55]. SAKE is
based on the following observation in GRAPPA:

XC

k≠i
yk � w k;ið Þ ¼ yi ð47Þ

which implies that the i-th k-space measurement can
be represented as the linear combination of the filtered
k-space data from other coils. In matrix form, this recur-
sive relationship implies the existence of the null space
of the Hankel matrix.

HdjC Yð Þh i;kð Þ ¼ Hd y1

 �

⋯Hd yC

 �� �

h i;kð Þ ¼ 0 ð48Þ
In other word, Hd|C(Y) is low-ranked. Therefore,

SAKE solves the following low- rank matrix completion
problem to interpolate the missing k-space data:

min
M

rank H Mð Þð Þ

subject to PΩ mi

 � ¼ PΩ yi


 �
; i ¼ 1;⋯;C;

where PΩ(·) denotes the projection on the measured
k-space samples on the index set Ω. The problem was
solved using the iterative singular value shrinkage
method [94].

LORAKS
The low-rank modeling of local-space neighborhoods
(LORAKS) [56] was inspired by the finite support condi-
tion. More specifically, if the object γ has finite support,
we can easily find the function w such that

γw ¼ 0;

This results in a convolution relationship in k-space

y � h ¼ 0⇒H yð Þh ¼ 0;

where y and h denote the Fourier spectrum of γ and w,
respectively. Therefore, this gives a single channel ver-
sion of the low-rank condition, which results in the fol-
lowing rank minimization problem:

min
m

rank H mð Þð Þ

subject to PΩ mð Þ ¼ PΩ ŷð Þ;

ALOHA and GIRAF
Annihilating filter-based low rank Hankel matrix
(ALOHA) approach [57–60, 62] and GIRAF (Generic It-
erative Reweighted Annihilating Filter) [61] can be con-
sidered as the full generalization of SAKE and LORAKS
for general class of signals with the finite rate of innova-
tions (FRI) for MR measurements. Moreover, the ap-
proaches have unified the parallel imaging and
compressed sensing as a k- space interpolation with per-
formance guarantees [62], and can be used for artifact
correction [58]. This section describes the fundamental
dual relationship between transform domain sparsity
and low rankness in reciprocal domain, which is the key
ingredient. For better readability, we provide here a high
level description by assuming 1-D signals.
The Fourier CS problem of our interest is to recover

the unknown signal x(t) from the Fourier measurement:

x̂ ωð Þ ¼ F x tð Þf g ¼
Z

x tð Þe−iωtdt: ð49Þ

In classical Nyquist sampling, to avoid aliasing arte-
facts, the grid size should be at most:
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Δ ¼ 2π=τ

when the support of the time domain signal x(t) is τ.
Then, discrete Fourier data at the Nyquist rate is defined by:

x̂ k½ � ¼ x̂ ωð Þjω¼2πk
τ
: ð50Þ

We also define a length (r + 1)-annihilating filter hˆ[k]
for xˆ[k] that satisfies

ĥ � x̂
� �

k½ � ¼
Xr

p¼0
ĥ p½ �x̂ k−p½ � ¼ 0; ∀k: ð51Þ

The existence of the minimum length finite length an-
nihilating filter has been ex- tensively studied for FRI
signals [95–97]. Let r + 1 denotes the minimum size of
annihilating filters that annihilates discrete Fourier data
x̂½k� . Then, a d-tap anni- hilating filter h with d > r + 1
can be easily obtained by convolving an appropriate size
FIR filter with the minimum length annihilating filter. In
matrix form, this is equivalent to

Hd x̂ð Þh ¼ 0 ð52Þ
where the Hankel structure matrix Hdðx̂Þ is constructed
as

Hd x̂ð Þ ¼
x̂ 0½ � x̂ 1½ � ⋯ x̂ d−1½ �
x̂ 1½ � x̂ 2½ � ⋯ x̂ d½ �
⋮ ⋮ ⋱ ⋮

x̂ n−d½ � x̂ n−d þ 1½ � ⋯ x̂ n−1½ �

2
664

3
775 ð53Þ

Assume that min(n − d + 1, d) > r. Then, we can show
the following low rank property [62]:

RANKH x̂ð Þ ¼ r; ð54Þ
Thanks to the low-rankness of the associated Hankel

matrix, the missing k-space data can be easily interpo-
lated using the following low-rank matrix completion
[62]:

minimize
m∈ℂ n

RANK H mð Þ
subject to PΩ mð Þ ¼ PΩ x̂ð Þ; ð55Þ

where PΩ is the projection operator on the sampling
location Ω. Moreover, as shown in [62], the
low-rank matrix completion approach (55) does not
compromise any optimality compared to the stand-
ard Fourier CS.
Note that signals may not be sparse in the image do-

main, but can be sparsified in a transform domain. In
fact, this was the main idea of the compressed sensing.

Specifically, the signal x of our interest is a non-uniform
spline that can be represented by:

Lx ¼ w ð56Þ
where L denotes a constant coefficient linear differential
equation that is often called the continuous domain
whitening operator in [98, 99]:

L≔aK∂K þ aK−1∂K−1 þ…þ a1∂þ a0 ð57Þ
and w is a continuous sparse innovation:

w tð Þ ¼
Xr−1

j¼0
c jδ t−t j


 �
: ð58Þ

For example, if the underlying signal is piecewise con-
stant, we can set L as the first differentiation. In this case,
x corresponds to the total variation signal model. Then,
by taking the Fourier transform of (56), we have

ẑ ωð Þ≔l̂ ωð Þx̂ ωð Þ ¼
Xr−1

j¼0
aje

−iωx j ð59Þ

where

l ωð Þ ¼ aK iωð ÞK þ aK−1 iωð ÞK−1 þ⋯þ a1 iωð Þ þ a0

ð60Þ
Accordingly, the Hankel matrix HðẑÞ from the weighted

spectrum ẑ (ω) satisfies the following rank condition:

RANKH ẑð Þ ¼ r:

Thanks to the low-rankness, the missing Fourier data
can be interpolated using the following matrix comple-
tion problem:

ðPwÞ minm∈Cn‖HðmÞ‖�subjecttoPΩðmÞ ¼ PΩð̂l⊙ŷÞ;
ð61Þ

or, for noisy Fourier measurements ŷ,

ðP′
wÞ minm∈Cn‖HðmÞ‖�subjectto‖PΩðmÞ−PΩð̂l⊙ŷÞ‖≤δ

ð62Þ

where ⊙ denotes the Hadamard product, l̂ and x̂ denotes

the vectors composed of full samples of l̂ (ω) and x̂(ω),
respectively. After solving (Pw), the missing spec- tral
data x̂ (ω) can be obtained by dividing by the weight, i.e.

x̂ðωÞ ¼ mðωÞ=̂lðωÞ assuming that l̂ðωÞ≠0.
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The idea can be generalized for any transform domain
sparse signals as long as the transform can be repre-
sented using shift-invariant filters. Wavelet domain
sparse signal belongs to this class. In this case, the
weight kernel in the Fourier domain is obtained as the
spectrum of the subband filters [57–60, 62]. For ex-
ample, Fig. 3 showed the construction of the Hankel
matrix for the MR parameter mapping, where the

k-space weighting from wavelet weighting is applied only
along the phase encoding direction, whereas no weigh-
ing is applied along the t-domain since the correspond
temporal spectrum is already sparse [59].
The idea can be also easily generalised to the par-

allel imaging by exploiting (19). Specifically, (19) can
be equivalently represented using the matrix
representation:

Fig. 3 Construction of Hankel matrix for MR parameter mapping [59]

Fig. 4 Construction of Hankel matrix for multi-channel filter data for the case of MR parameter mapping [59]
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Hd γ̂ i

 �̂

s j ¼ Hd γ̂ j
 �̂
si;∀i≠ j; ð63Þ

This implies that an exten^ded Hankel matrix HdjCð½
γ̂1⋯γ̂C �Þ in (46) is low ranked.
For example, the multi-channel construction of Hankel

matrix for MR parameter mapping [59] is shown in Fig. 4.
One of the most important advantages of the Hankel

matrix formulation is that the coil diversity can be read-
ily exploited in addition to the image domain redun-
dancy in a unified framework. This makes the separate
coil sensitivity estimation unnecessary.

Clinical applications
Since the compressed sensing MRI allows significant accel-
eration of MR acquisition, it has been extensively applied
for various clinical applications such as fast cardiac MRI,
whole heart MRI, dynamic contrast enhanced (DCE)-MRI,
diffusion MRI, spectroscopic, etc., that usually require sig-
nificant acquisition time using standard methods.
For example, Otazo et al. [84] applied the CS method

to the first pass cardiac perfusion MRI and demon-
strated feasibility of 8-fold acceleration in vivo imaging
using standard coil arrays. They showed that CS method
results in similar temporal fidelity and image quality to
GRAPPA with 2-fold acceleration [84]. Hsiao et al. [100]
applied combined parallel imaging and compressed sens-
ing to achieve 4D phase contrast for the quantification
of cardiac flow and ventricular volumes pediatric pa-
tients during congenital heart MRI examinations.
Vincent et al. [101] employed CS to evaluate LV function
and volumes and found that CS strategy with the single
breath hold provided similar results to multi breathhold
imaging protocols.
For free-breathing contrast-enhanced multiphase liver

MRI, Chandarana et al. [102] showed that a combination
of compressed sensing, parallel imaging, and radial
k-space sampling demonstrated the feasibility of
breath-hold cartesian T1 weighted imaging. Espagnet et
al. [103] employed golden-angle radial sparse parallel
technique for DCE-MRI to evaluate the permeability
characteristics of the pituitary gland.
For diffusion MRI, Landman et al. [104] showed that

CS reconstruction using standard data can resolve cross-
ing fibers similar to a standard q-ball approach using
much richer data with longer acquisition time. Kuhnt et
al. [105] showed that High Angular Resolution Diffusion
Imaging (HARDI) + CS is a promising approach for fiber
tractography in clinical practice.
Finally, for the spectroscopic imaging, Larson et al.

[106] developed a CS method for acquiring hyperpolar-
ized 13C data using multiband excitation pulses and
achieved 2 s temporal resolution with full volumetric
coverage of a mouse. Geethanath et al. [107] demonstrated

a potential reduction in acquisition time by up to 80% or
more for hydrogen 1 MR spectroscopic imaging using CS,
with negligible loss of clinical information.
With the commercially available CS reconstruction

methods, we expect to see more clinical applications of
CS in the near future.

Conclusions
Nowdays, compressed sensing has become an mature
technology, as reflected by recent approval by FDA.
Major vendors have started to sell the compressed sens-
ing reconstruction softwares, and many clinical re-
searchers have been evaluating its clinical usefulness.
Despite of this maturity, some of the main technical is-

sues of the compressed sensing are 1) the computational
complexity of the algorithm is relative high, and at high ac-
celeration, image quality degradation is still reported. Al-
though the recent state-of-the art CS techniques such as
structured Hankel matrix approach can address the quality
degradation problems, it also increases the computational
complexity, which may interfere the clinical workflow.
Fortunately, for the last two years, the MR image re-

construction field have been rapidly changed thanks to
the successful demonstration of of the deep learning-
based MR reconstruction technologies [108–113]. The
sudden popularity of deep learning approaches can be
attributed to the real-time reconstruction in spite of the
significant improvement of the image quality. Thus,
when originally presented, these techniques were
regarded as totally different technology that is nothing
to do with the compressed sensing. However, recent the-
oretical analysis [114] showed that the deep convolu-
tional neural network is closely related to the Hankel
matrix decomposition. Therefore, we can still argue that
the compressed sensing MRI has renewed interests in
the form of deep learning, and it will be interesting to
see how this exciting and rapidly evolving field will de-
velop for the coming decades.
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