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Abstract

existing DAS in the formula of the conventional CF.

Background: In Photoacoustic imaging (PAI), the most prevalent beamforming algorithm is delay-and-sum (DAS)
due to its simple implementation. However, it results in a low quality image affected by the high level of sidelobes.
Coherence factor (CF) can be used to address the sidelobes in the reconstructed images by DAS, but the resolution
improvement is not good enough, compared to the high resolution beamformers such as minimum variance (MV). In
this paper, it is proposed to use high-resolution-CF (HRCF) weighting technique in which MV is used instead of the

Results: The higher performance of HRCF is proved numerically and experimentally. The quantitative results obtained
with the simulations show that at the depth of 40 mm, in comparison with DAS+CF and MV+CF, HRCF improves the
full-width-half-maximum of about 91% and 15% and the signal-to-noise ratio about 40% and 14%, respectively.
Conclusion: Proposed method provides a high resolution along with a low level of sidelobes for PAI.
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Background

In photoacoustic imaging (PAI), a short electromag-
netic pulse, i.e. laser or radio frequency (RF), illu-
minates the target of imaging, and Ultrasound (US)
waves are generated based on the thermoelastic effect
[1, 2]. In comparison with other imaging modalities, PAI
has multiple advantages leading to many investigations
[3, 4]. The main incentive in PAI is having the merits of
the US imaging spatial resolution and the optical imag-
ing contrast in one imaging modality [5]. PAI can be
used in different fields of study such as tumor detection
[6, 7], ocular imaging [8] and functional imaging [9, 10].
Moreover, contrast agents and nanoparticles play a signif-
icant role in PAI [11, 12]. PAI can be separated into two
fields: photoacoustic tomography (PAT) and photoacous-
tic microscopy (PAM) [13, 14]. PAT, for the first time, was
successfully used as in vivo functional and structural brain
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imaging modality in small animals [15]. In PAT, an array
of elements may be formed in linear, arc or circular shape,
and mathematical reconstruction algorithms are used to
obtain the optical absorption distribution map of the tis-
sue [16—18]. Most of the used reconstruction algorithms
for image formation in PAI are based on some assump-
tions leading to artifacts and disturbing effects on the
formed photoacoustic (PA) images. One of the challenges
in PA image formation is related to reduction of these
effects for different number of transducers and properties
of imaging media [19-21].

Some modifications should be considered if an algorithm
in US imaging is going to be used in PAIL These modi-
fications have led using different hardware to implement
an integrated US-PA imaging device [22, 23]. DAS is
the most commonly used beamforming algorithm in PAIL
However, it leads to a low quality image, having a wide
mainlobe and high level of sidelobes [24]. Adaptive beam-
formers, commonly employed in radar, have the ability
of weighting the aperture based on the characteristics
of detected signals, providing a high quality image with
a wide range of off-axis signals rejection. MV can be
treated as one of the commonly used adaptive methods
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in medical US imaging [25, 26]. Vast variety of modifi-
cations have been investigated on MV such as complex-
ity reduction [27, 28], shadowing suppression [29], using
eigenstructure to enhance MV performance [30, 31], and
combination of MV and multi-line transmission (MLT)
technique [32]. Matrone et al.proposed a new algorithm
namely delay-multiply-and-sum (DMAS), as a beamform-
ing technique for medical US imaging [33]. Double stage
DMAS (DS-DMAS), outperforming DMAS in the terms
of contrast and sidelobes, was introduced for the linear-
array US and PAI [34-36]. Minimum variance-based
DMAS has been proposed for resolution improvement
in DMAS while the level of sidelobes would be retained
[37, 38]. Coherence factor (CF) can be mentioned as
one of the prevalent weighting methods in beamforming
field [39]. The performance of CF has been investigated
for US imaging and PAI in [40] and [41], respectively.
Short-lag spatial coherence beamforming was also used
to enhance the visualization of prostate brachytherapy
seeds [42, 43]. Moreover, a high resolution CF (HRCF)
has been investigated for high-frame rate US imag-
ing [44]. Recently, a modified version of the CF has
been reported by the authors where the aim was to
achieve a higher contrast compared to the conventional
CF [45].

In this paper, the performance of HRCEF is investigated
for linear-array PAI. The concept of this technique indi-
cates that a high resolution image, obtained with an algo-
rithm such as MV, can be used to weight the calculated
samples instead of the formed image by DAS. It is shown
that the proposed weighting algorithm (used with DAS)
outperforms the DAS and MV (with/without CF) in the
terms of resolution, sidelobes and contrast.

Numerical results and performance assessment

In this section, numerical results are presented to
illustrate the performance of the proposed technique for
PA image formation in comparison with DAS, DAS+CE,
MV and MV+CE.

Simulated point targets

Simulation setup

The K-wave Matlab toolbox was used to simulate
the numerical study [46]. Imaging region was 20 mm
in the lateral axis and 80 mm in the vertical axis. A
linear-array having M=128 elements operating at 7
MHz central frequency and 77% fractional bandwidth
was used to detect the PA signals generated from the
defined initial pressures. The schematic of the designed
simulation is shown in Fig. 1. The speed of sound
was assumed to be 1540 m/s during the simulations.
The sampling frequency was 50 MHz, subarray
length L=M/2, K=3 and A = 1/100L for all the
simulations.
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Qualitative and quantitative evaluation

The reconstructed images are shown in Fig. 2, along
with a zoomed version at the depth of 40 mm (shown
in Fig. 3) for a better evaluation. As can be seen, the
reconstructed image using DAS have a low quality along
with high sidelobes. MV improves the resolution signif-
icantly, but the sidelobes still affect the image. Using CF
combined with DAS or MV results in sidelobes reduction
and image quality enhancement. Even though the image
reconstructed by MV+CE, shown in Fig. 2d, has a high
resolution, but the negative effects of the sidelobes still
degrade the image quality. In Fig. 2e, it can be seen that
the sidelobes are reduced compared to Fig. 2d while
the resolution is retained. To assess in more details, the
lateral variations of the reconstructed images shown in
Fig. 2 are shown at four imaging depths in Fig. 4. As can
be seen, DAS+HRCEF results in lower level of sidelobes
and narrower width of mainlobe compared to other
beamformers. Moreover, the lateral valleys between the
targets have the lowest levels using the proposed method.
Consider, for instance, the depth of 50 mm where the
level of sidelobes are of about -36 dB, -69 dB, -45 dB,
-79 dB and -88 dB for DAS, DAS+CF, MV, MV+CF and
DAS+HRCEF, respectively. Thus, the proposed method
leads to lowest sidelobes in comparison with other beam-
formers. Moreover, the levels of the lateral valleys for
DAS, DAS+CE, MV, MV+CF and DAS+HRCEF are about
-29 dB, -61 dB, -37 dB, -70 dB and -80 dB, respectively. It
indicates the higher separability of the proposed method.
To evaluate the proposed method quantitatively, the
full-width-half-maximum (FWHM) in -6 dB and signal-
to-noise ratio (SNR) metrics are calculated and presented
in Table 1 and Table 2, respectively. SNRs are calculated
using the formula explained in [35]. For the axial FWHM,
at the depth of 25 mm, DAS, DAS+CFE, MV, MV +CF and
DAS+HRCF leads to 442.7 um, 441.0 um, 433.2 um,
431.7 um and 425.1 pum, respectively.

As demonstrated in Table 1, the proposed method for
PA image reconstruction results in a narrower width of
mainlobe in -6 dB compared to other beamformers in
the all depth of imaging. Of note, there is no significant
improvement compared to MV and MV+CE. Consider, in
particular, the depth of 45 mm where DAS, DAS+CFE, MV,
MV+CF and DAS+HRCEF leads to a FWHM of 2284 um,
1388 wum, 131 um, 131 pum and 103 pm, respectively. In
comparison with a high resolution method such as MV,
the proposed method leads to 28 um FWHM improve-
ment. As shown in Table 2, the proposed method results
in a higher SNR in comparison with other reconstruc-
tion methods at the all depths of imaging. Consider, for
instance, the depth of 55 mm where DAS, DAS+CF, MV,
MV +CF and DAS+HRCEF results in a SNR of 37.8 dB, 55.4
dB, 47.8 dB, 68.3 dB and 77.7 dB, respectively. In other
words, DAS+HRCF improves the SNR for about 9 dB and
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Fig. 1 Schematic of the simulation study

Linear array transducer, having 128 elements, 7 MHz

22 dB compared to MV+CF and DAS+CE, respectively,
proving its superiority for linear-array PAL

The proposed method is evaluated at the pres-
ence of high level of imaging noise. Eleven 0.1 mm
radius spherical absorbers as initial pressure were
positioned along the vertical axis every 5 mm begin-
ning 25 mm from transducer surface. Noise was
added to the detected signals having a SNR of 0
dB. The reconstructed images are shown in Fig. 5.

As can be seen, the presence of the noise in the recon-
structed images using DAS and MV degrade the images.
CF results in the higher noise suppression and higher
image quality, as shown in Fig. 5b and Fig. 5d. As
shown in Fig. 5e, the sidelobes are better reduced using
DAS+HRCE. The lateral variations for images shown in
Fig. 5, at two depths of imaging, are shown in Fig. 6. As
can be seen, the proposed method results in lower level of
sidelobes and narrower width of mainlobe.
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Fig. 2 Reconstructed images using the simulated data. a DAS, b DAS+CF, ¢ MV, d MV+CF and e DAS+HRCF. A linear-array and point phantom were
used for the numerical design. All images are shown with a dynamic range of 60 dB. Noise was added to the detected signals having a SNR of 40 dB
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Fig. 3 A close view of the reconstructed images shown in Fig. 1
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Experimental results

Experimental setup

To further evaluate the proposed weighting method
and its effects on enhancing the PA images, phantom
experiments were performed in which a phantom con-
sists of 2 light absorbing wires with diameter of 150 pum

were placed 1 mm apart from each other, as seen in
Fig. 7. In this experiment, we utilized a Nd:YAG pulsed
laser (Phocus core system, OPOTEK Inc, Carlsbad, CA,
USA), with the pulse repletion rate of 30 Hz at wave-
lengths of 532 nm. A programmable digital ultrasound
scanner (System Vantage 128,Verasonics, Inc., Kirkland,
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Fig. 4 Lateral variations of the reconstructed images shown in Fig. 2 at the depths of a 20 mm, b 40 mm, ¢ 55 mm and d 70 mm
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Table 1 FWHM(um) in -6 dB values at the different depths

Depth(mm) DAS DAS+CF MV MV+CF DAS+HRCF,
25 1106 677 118 118 102
30 1388 848 127 126 104
35 1632 986 130 130 105
40 1942 1179 121 121 103
45 2284 1388 131 131 106
50 2684 1619 138 137 108
55 3068 1862 144 144 110

WA, USA), equipped with a linear array transducer (L11-
4v, Verasonics, Inc., Kirkland, WA, USA) operating at
frequency range between 4 to 9 MHz was utilized to
acquire the PA RF data. A high speed FPGA was used to
synchronize the light excitation and PA signal acquisition.

Qualitative and quantitative evaluation

The reconstructed images are shown in Fig. 8. As can be
seen, the artifact and noise affect the reconstructed image
by DAS while the CF improves the image quality by sup-
pressing them. As shown in Fig. 8c, MV results in an
image having a high resolution, but the presence of the
noise highly affects the image. As can be seen in Fig. 8e,
HRCEF results in a high resolution while the sidelobes are
degraded, and the presence of the noise is clearly lower
than other methods, comparing the background of the
Fig. 8e with other images shown in Fig. 8. To assess the
images in details, the lateral variations of the two wire
targets are shown in Fig. 9. As can be seen, the HRCF out-
performs the conventional CF combined with DAS and
MV and results in a narrower width of mainlobe and lower
level of sidelobes. Consider, for instance, the depth of 24
mm where DAS+CF, MV+CF and DAS+HRCEF result in -
36 dB, -47 dB and -60 dB sidelobes, respectively. In other
words, DAS+HRCF improves the sidelobes for about 24
dB and 13 dB compared to DAS+CF and MV +CF, respec-
tively. To compare the experimental images quantitatively,
SNRs for all the methods are calculated and presented in
Table 3 where the proposed weighting method leads to a
higher SNR, for both imaging targets, compared to other

Table 2 SNR (dB) values at the different depths

Depth(mm) DAS DAS+CF \Y MV+CF DAS+HRCF,
25 489 66.8 598 80.6 90.9
30 46.6 64.5 57.2 77.9 87.9
35 44.2 62.0 54.8 754 854
40 424 60.2 53.2 739 84.0
45 40.8 585 51.2 71.8 81.6
50 393 572 49.5 7032 798
55 378 554 47.8 68.3 77.7
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methods, indicating the superiority of HRCF weighting
method.

Discussion

The main improvement gained by HRCF is having a high
resolution and low sidelobes at the same time. DAS is the
most commonly used beamformer in PA and US imaging
which is mainly as a result of its simple implementation.
Moreover, it provides a real-time imaging. However, it
results in a low quality image having a low resolution and
high sidelobes due to its blindness and non-adaptiveness.
To put it more simply, DAS considers all the calculated
samples the same as each other, and there is just a summa-
tion process. On the other hand, adaptive beamformers,
such as MV, provides a higher image quality compared
to DAS, especially in the term of resolution. However, in
MYV, sidelobes affect the reconstructed image and degrade
the image quality. CF is a weighting method that can be
used with beamformers, such as DAS or MV, for sidelobes
reduction. However, conventional CF weighting does not
improve the resolution and the width of mainlobe sig-
nificantly, compared to beamformers such as MV. It can
be seen that in (2), the numerator of the formula of CF
is the output of DAS. While CF reduces the sidelobes,
the performance of CF is not high in the term of reso-
lution, which is mainly due to the existence of DAS on
the numerator of the formula of CF. Using MV instead
of the exiting DAS in the (2) can improve the resolu-
tion gained by the conventional CF (15). The proposed
method, HRCF, is a weighting method which can be
applied on any beamforming algorithm (DAS was used in
this paper). The reconstructed images (Fig. 2 and Fig. 3)
show that the HRCF outperforms CF combined with DAS
and MV. As shown in Fig. 2 and Fig. 3, the point tar-
gets are better distinguished and detectable using HRCF
weighting procedure, and the sidelobes are better reduced.
The proposed method was evaluated in the term of the
presence of high level of noise, and the reconstructed
images were shown in Fig. 5. As can be seen, the HRCF
reduces the negative effects of the added noise, and it pro-
vides a higher robustness compared to other methods.
The images have been evaluated using the lateral varia-
tions shown in Fig. 4 and Fig. 6, and all the results indicate
the superiority of HRCF in the terms of sidelobes, lat-
eral valley and the width of mainlobe. Tables 1, 2 and 3
show the quantitative evaluation of the proposed weight-
ing method. They indicate that the HRCF reduces the
presence of the noise and results in the narrower width
of mainlobe. Despite all the evaluation with the simula-
tions, the algorithm should be evaluated using experimen-
tal data. The generated experimental images are shown
in Fig. 7, and the superiority of HRCF can be clearly
seen. The lateral variations of the experimental images
are shown in Fig. 9, proving the higher performance of
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Fig. 5 Reconstructed images using the simulated data. a DAS, b DAS+CF, ¢ MV, d MV+CF and e DAS+HRCF. A linear-array and point phantom were
used for the numerical design. All images are shown with a dynamic range of 60 dB. Noise was added to the detected signals having a SNR of 0 dB

HRCE. Compared to similar method proposed in [45],
modified CF (MCF), it should be noticed that the pro-
posed method in this paper focuses on a high resolution
(better than MV), providing a contrast slightly better than
CE. However, MCF provides almost 50 dB lower side-
lobes compared to CF, with a slightly improved resolution.
It should be mentioned that the higher performance of
the HRCEF is obtained at the expense of the higher com-
putational burden where replacing DAS by MV on the
numerator of the formula of CF would result the order
of complexity change from O(M) to O(L?). The com-
putational time to generate images shown in Fig. 7a-e

was 0.96 s, 1.09 s, 144.16 s, 145.05 s and 145.11 s,
respectively. All the results indicate that the HRCF can
be an effective weighting method for image formation in
linear-array PAI, and it provides a higher contrast and
resolution compared to DAS and MV combined with
conventional CF.

Conclusions

In this paper, the HRCF was proposed as a weighting
method in linear-array PAIL It was shown that there is
a DAS on the numerator of the formula of CF, and it
can be replaced with MV beamformer. The proposed
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Fig. 6 Lateral variations of the reconstructed images shown in Fig. 5 at the depths of (a) 45 mm and b 55 mm
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Fig. 7 The schematic of the setup used for the experimental PAI

method (HRCF) was evaluated numerically and experi-
mentally, and it was shown that it leads to a higher image
quality compared to MV and DAS (with/without CF). The
quantitative results show that at the depth of 55 mm, com-
pared to DAS+CF and MV+CF, HRCF improves the SNR
of about 9 dB and 22 dB, respectively, and reduces the
FWHM of about 1752 um and 44 jum, respectively.

Methods

In this section, the concept of image reconstruction in
linear-array PAI, along with the concerned algorithms in
this paper, are discussed.

Beamforming

In linear-array PAI, a laser illuminates the target of imag-
ing. Then, PA signals are recorded using an US transducer.
The detected signals can be used for the image forma-
tion using a beamforming algorithm. The most common
beamforming algorithm in linear-array PAI is DAS. Its
formula is as follows:

M
ypas (k) =Y " xi(k— A, (1)
i=1

where ypas(k) is the output of the beamformer, k is the
time index, M is the number of elements of array, and
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Fig. 8 Reconstructed images using the experimental detected data. a DAS, b DAS+CF, ¢ MV, d MV+CF and e DAS+HRCF. A linear-array and wire
target phantom were used for the experimental design. All images are shown with a dynamic range of 60 dB
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Fig. 9 Lateral variations of the reconstructed images obtained with DAS+CF, MV+CF and DAS+HRCF, shown in Fig 8, at the depths of a 22 mm and

x;(k) and A; are the detected signals and the correspond-
ing time delay for the detector i, respectively. To have
a more efficient beamformer and improve the recon-
structed image, CF can be combined with DAS [40]. The
combination of DAS and CF results in sidelobes reduction
and contrast enhancement. CF, as an effective weighting
process, is given by:

M 2
> xi(k — Aj)
CF(k) = —= 5. 2)
My |xitk — Ay
i=1

As can be seen in (2), the argument inside the squared
absolute value is the output of DAS algorithm. (1) can be
simply implemented and provides a real-time PAIL. How-
ever, due to the low range of the off-axis signals rejection,
it leads to low quality images. The combination of DAS
and CF can be written as follows:

¥pas+cr (k) = CF(k) * ypas(k). (3)

MYV can be chosen as an algorithm which provides a
high resolution in PAI [47]. However, sidelobes caused
by MV highly affect the image quality and degrade the
contrast of the reconstructed image. The output of MV
adaptive beamformer is given by:

M

(k) = WHIX (k) =y witkmitk — Ay, (4)
i=1

Table 3 SNR (dB) values at the different depths for images
shown in Fig. 7

Depth(mm) DAS DAS+CF MV MV+CF DAS+HRCF,
22 479 576 41.0 54.1 60.2
24 46.6 56.2 40.1 530 59.1

where X;(k) is the time-delayed array detected signals
Xa(k) =[x1(k), x2(k) , ..., ka1 (k)] T7 W (k) = [wi(k), wa(k)

s e wM(k)]T is the beamformer weights, and OT and
(.)H represent the transpose and the conjugate transpose,
respectively. The detected array signals can be written as
follows:

X(k) = s(k) + i(k) + n(k) = s(k)a + i(k) + n(k), (5)

where s(k),i(k) and n(k) are the desired signal, interfer-
ence and noise components received by the transducer,
respectively. Parameters s(k) and a are the signal wave-
form and the related steering vector, respectively. MV
bemaformer can be used to adaptively weight the calcu-
lated samples. Its goal is to achieve the optimal weights in
order to estimate the desired signal as accurately as possi-
ble. The superiority of MV algorithm has been evaluated
in comparison with static windows, such as Hamming
window [26]. To acquire the optimal weights, signal-to-
interference-plus-noise ratio (SINR) needs to be maxi-
mized:

o2 \wha)?

WHR W’
where Ri;, and o2 are the M x M interference-plus-
noise covariance matrix and the signal power, respectively.
The maximization of SINR can be gained by minimizing
the output interference-plus-noise power while maintain-

ing a distortionless response to the desired signal using
following equation:

min WIR,,W, st
w

SINR = (6)

whag=1. 7)

The solution of (7) is given by [48]:
Rla
i+n (8)

Hp-1,’
a Ri+na

Wopt =

In practice, the interference-plus-noise covariance matrix
is unavailable. Consequently, the sample covariance
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matrix is used instead of the unavailable covariance matrix
using N recently received samples and is given by:

N
R= % > XamXam™. ()

n=1

Using MV in medical US imaging encounters some prob-
lems which are addressed and discussed in reference [40].
The subarray-averaging or the spatial-smoothing method
can be used to achieve a better estimation of the covari-
ance matrix using decorrelation of the coherent signals
received by the array. The covariance matrix estimation
using the spatial-smoothing can be written as:

M—L+1

R(k) = o) XaoX, (10)
=1

M—L+

where L is the subarray length, and Xﬁi (k) = [xil k), xﬁiﬂ

(), e 72 (K
subarray. Due to the limited statistical information, only a
few temporal samples are used to estimate the covariance
matrix. Therefore, to obtain a stable covariance matrix,
the diagonal loading (DL) technique is used. This method
leads to replacing R by the loaded sample covariance
matrix, R = R + yI, where y is the loading factor:

] is the delayed input signal for the Iy

y = A.trace {f?(k)} , (11)

where A is a constant related to the subarray length.
Also, the temporal averaging method can be applied along
with the spatial averaging to gain resolution enhance-
ment while the contrast is retained. The estimation of
the covariance matrix using both temporal averaging and
spatial smoothing in given by:

R(k) = 1 *
QK +1)M —L+1)
K M-L+1 (12)
YooY XL+ mXhk+m,
n=—K [=1

where the temporal averaging is performed over (2K +
1) samples. After estimation of the covariance matrix, the
optimal weights are calculated by (8) and (12). Finally, the
output of MV beamformer is given by:

1 M—-L+1
o - H 1
) =~ ——— ; W () X (k). (13)

where W, (k) =[w1(k), wo(k), ..., wr(k)]T. Considering
(2), it can be seen that the numerator of the fraction is the
output of DAS beamformer, and this is why the output of
the combination of DAS and CF does not have a high res-
olution. To put it more simply, the combination of DAS
and CF does not provide a high resolution because DAS is
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weighted using a procedure in which DAS plays a signifi-
cant role. On the other hand, using MV combined with CF
weighting is a good alternative. However, as will be shown
in the next section, the output of the combination of DAS
and MV can be further improved using HRCF weighting
procedure combined with DAS. Its formula is as follows
[44, 49]:

¥pas+HRCE(K) = HRCF (k) * ypas(k), (14)
where
2
M| ypv (k)
HRCF (k) = — 5 (15)
xi(k — Ay)
i=1

In the next section, the results of the proposed method
(the combination of DAS and HRCF) for PA image recon-
struction is evaluated.
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