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Abstract

diminished at a flow rate of 10 uL/min.

in vitro.

Background: Organoids derived from induced pluripotent stem (iPS) or embryonic stem (ES) cells have been
evaluated as in vitro models of development and disease. However, maintaining these cells under long-term static
culture conditions is difficult because of nutrition shortages and waste accumulation. To overcome these issues,
perfusion culture systems are required for organoid technology. A system with a stable microenvironment, nutrient
availability, and waste removal will accelerate organoid generation. The aim of this study was to develop a novel
perfusion system for renal organoids by maintaining the air-liquid interface with a device fabricated using a 3D printer.

Results: Our results revealed slow flow at the organoid cultivation area based on microbead movement on the
membrane, which depended on the perfusion rate under the membrane. Moreover, the perfused culture medium
below the organoids via a porous membrane diffused throughout the organoids, maintaining the air-liquid interface.
The diffusion rates within organoids were increased according to the flow rate of the culture medium under the
membrane. The perfused culture medium also stimulated cytoskeletal and basement membrane re-organization
associated with promotion tubular formation under 2.5 ul/min flow culture. In contrast, tubules in organoids were

Conclusions: Our liquid-air interface perfusion system accelerated organization of the renal organoids. These results
suggest that suitable perfusion conditions can accelerate organization of epithelial cells and tissues in renal organoids
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Background

Establishment of embryonic stem (ES) and inducible pluri-
potent stem (iPS) cell culture technologies allow for the
generation of various cell types by in vitro differentiation.
Moreover, three-dimensional (3D) culture of differentiated
cells accelerates self-organization and biological functions
better than traditional two-dimensional culture. Previously,
“organoids” simply represented 3D cell-aggregates contain-
ing epithelial cysts or tubules [1]. Currently, organoids
developed from ES or iPS cells have been evaluated as in
vitro reproducible models of complex in vivo human tis-
sues [2]. The retina, liver, lung, inner ear, etc. have already
been generated as organoids from ES or iPS cells [3-6].
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Renal organoids were produced in a study of renal pro-
genitor differentiation [7-10] and contained metanephric
mesenchymal cells and ureteric bud cells which organized
into embryonic renal tubules in vitro. One of the differen-
tiation protocols used to imitate the embryonic status was
reported as an adaptation of 3D organotypic cultivation at
the air-liquid interface [10]. They obtained much of the
nephron structure with an endothelial cell network struc-
ture in vitro using iPS cells.

For continuous and progressive development, 3D orga-
noids require a supply or perfusion of fresh culture media
nutrients and the elimination of waste products. Similar to
engineered 3D myocardial tissue or 3D hepatic structure
[11, 12], renal organoids require vascularization by co-cul-
tivation with endothelial cells [13]. Particularly, the kidney
has high nutrient and oxygen demands, similar to the
heart, because of its specific function [14]. For example,
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proximal renal tubular epithelial cells are involved in trans-
porting glucose, minerals, and water from the tubular en-
vironment to the external vasculature via transporters.
Moreover, podocytes also produce a size-specific slit mem-
brane to eliminate wastes from the blood by glomerular fil-
tration. In fact, it was reported that cellular mitochondrial
damage was associated with dysfunction of the podocytes
and proximal tubules [15].

In addition to fresh medium supplementation, biomim-
etic flow stimulation is important for the maturation of
epithelial polarity in 3D tissues. Because renal epithelial
cells are always exposed to urinal flow on one side and
abundant blood flow at the basolateral side, it is difficult to
maintain their function under static culture conditions in
vitro [16]. Therefore, several renal epithelial cell perfusion
culture systems have been developed [17-19]. As a general
method, monolayer epithelial cells are cultured on a por-
ous membrane perfused on the apical side to imitate renal
tubule flow [20]. Another perfusion system was fabricated
to imitate the glomerular microenvironment by perfusion
of co-cultured podocytes and endothelial cells via porous
membranes [21]. A more accurate renal tubule structure
was fabricated using a 3D bio-printer and perfused to
examine the toxicity towards tubular cells in vitro. How-
ever, few studies have examined perfusion of renal orga-
noids in vitro.

This study is the first to report a perfusion system with
an air-liquid interface for the organotypic cultivation of
renal organoids produced from human iPS cells. Because
renal organoid structures cannot be maintained under
submerged conditions, our system was developed for
medium perfusion under renal organoids on porous
membranes to maintain an air-liquid interface. In the
embryo, the kidney is perfused by an immature and
leaky renal vasculature [22]. The low flow produced by
our perfusion system may mimic the embryonic renal
blood perfusion, providing adequate flow for renal orga-
noid perfusion. This method can be used for long-term
cultivation and maturation of organoids in vitro.

Results

Renal organoids were induced from hiPS cells

The protocol for renal organoid production allowed us to
obtain epithelial cells and determine nephrin expression in
proximal epithelial cells in 3D organoids until 12 days after
3D structure formation (Fig. 1a). Ellipsoidal organoids
more than approximately 5mm in diameter and 400 um
thick were obtained on a cell culture insert membrane
(Fig. 1b,c) at 12 days after 3D formation. These organoids
showed a well-developed tubular structure, as confirmed
by phase-contrast microscopy (Fig. 1d). E-Cadherin immu-
nostaining and Lotus tetragonolobus lectin (LTL) staining
results revealed proximal tubules (PT) as E-cadherin, with
LTL-positive tubules, distal tubules (DT), and ureteric bud
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cells stained as E-cadherin-positive and LTL-negative tu-
bules (Fig. 1e). At 15 days after organoid formation, EMX2,
SIM1, and GATAS3, ureteric bud cells markers, were also
expressed in the organoid (Additional file 1) The results
indicate that organoids at day 12 after 3D formation con-
tained PT and DT and included ureteric bud cells. Figure 1
f shows the results of cytokeratin 8 (CK8) and PAX2
immunostaining. CK8-positive cells were similar to E-
cadherin- and also PAX2-positive cells. PAX2 is a tran-
scription factor for mesenchymal-to epithelial transition in
renal development. WT1 is also a transcription factor that
functions in nephron development. WT1-positive cells
were also observed in these tubules. Thus, renal devel-
opment occurred in dayl2 organoids after 3D forma-
tion. Furthermore, gene expression of CDH1 (E-
cadherin), an epithelial cell marker, and NPHS1
(nephrin 1), a podocyte marker, was increased at day 9
after 3D formation. The expression of these genes plat-
eaued until 19 days after 3D formation. Thus, renal
organoids containing renal tubules were obtained until
12 days after 3D formation from hiPS cells.

Culture medium perfusion of renal organoids with a
device maintaining the air-liquid interface

Renal organoids induced by organotypic cultivation
could not maintain their structures for 3days after
switching to submerged culture conditions (Fig. 2a,f).
Compared to organotypic cultivation, the bottom of the
organoid was decayed under the submerged condition
(Fig. 2b—d and g-i). The tubular structure in submerged
cultured organoids was diminished (Fig. 2e and j), indi-
cating that the air-liquid interface was important for the
continuous growth of organoids. Therefore, we fabri-
cated a device for renal organoid perfusion using a 3D
printer to maintain the air-liquid interface on the porous
membrane (Fig. 2k). This device supported the cell cul-
ture inserts and was connected with micropumps for
perfusion (Fig. 21, m). The flow of the perfusion medium
was maintained at the first inlet in the chamber under
porous membranes supporting organoids. Because of
this, the device could replace the medium and prevent
stress stimulation in the cultured organoids.

Simulation of flux on the membrane during perfusion
under the membrane

To demonstrate flux on the membrane, the movement of
fluorescence beads in the suspension on the membrane
during perfusion was traced by time-lapse microscopy.
Fluorescent beads exhibited turbulent flow on the mem-
brane (movement movie shown in Additional file 2) and
movement according to the flow volume under the mem-
brane. This movement was increased by increasing the
pore size in the membrane from 0.4 to 3.0 um (Fig. 3).
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These results indicate that perfusion under the membrane
results in flux on the membrane during perfusion.

Tracing perfused medium diffusion in the renal organoids
To clarify the diffusion of perfused medium within the
organoids, renal organoids were perfused with medium
containing Texas Red-conjugated dextran for 2 days.
The organoids were then examined for diffusion at dif-
ferent depths by cryo-sectioning after fixation. Dextran-
positive sections showed non-specific attachment or

endocytosis associated with micropinocytosis due to dif-
fusion of the culture medium in the organoids during
perfusion culture. Even under non-perfusion conditions,
Texas Red-conjugated dextran was slightly percolated
into the renal organoids around the porous membrane
(Fig. 4a, d). Interestingly, the culture medium under the
organoids diffused throughout the renal organoids to a
greater extent at a flow rate of 2.5 or 10 uL/min than
under the static condition (Fig. 4b—f), despite maintain-
ing the air-liquid interface during incubation in all
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Fig. 2 Organoids cultured at the air-liquid interface condition (a-e) or submerged (f-j) at 12 days after 3D formation. a and f indicate the schematic of
the condition and real macroscopy. b,g, microscopic (phase contrast) images (c,h) at 3 days (15 days after 3D formation) after cultivation. d and i
indicate the OTC images and nuclei-stained cryo-sections of these organoids (e, j). k White arrow heads at g)~i) were indicated degradation structure
of organoid. The original device fabricated using the 3D printer (k). Schematic explaining the cell culture insert setting (I) and flowing perfusion
medium under the organoid on the porous membrane in cell culture inserts (m)
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culture medium after 48 h of incubation using sham condition medium as a standard. Sham was incubated in a medium without organoid

groups (Fig. 4g—i). Consumption of glucose in the
medium and production of lactic acid during cultivation
are shown in Fig. 4g. The glucose concentration in the
medium after 48 h was similar under both conditions,
whereas the lactic acid concentration was altered by the
perfusion conditions. Compared to under static condi-
tions, the lactic acid concentration was decreased under
the 2.5 and 10 uL/min conditions. These results indi-
cate that perfusion culture can accelerate medium
diffusion throughout the renal organoids, despite main-
taining an air-liquid interface condition. Additionally,
the perfusion culture altered organoid metabolism in
the culture system.

Perfusion medium diffusion increased with flow rate
within the renal organoids

Upon addition of 0.5 pL of 1 mg/mL Texas Red-conjugated
dextran at the top of the organoids, the dextran immedi-
ately diffused following the movement of water in the orga-
noid. Therefore, we quantitatively analyzed the movement

of water in the organoids in which Texas Red-conjugated
dextran was added. The remaining dextran-positive areas
in the organoid sections were calculated and shown as a
graph (Fig. 5h). Compared to the static condition, the per-
fused condition showed diffusion of Texas Red-conjugated
dextran (Fig. 5a—f). These results indicate that the diffusion
rate throughout the renal organoid at the air-liquid inter-
face increased according to the flow rate.

Cytoskeletal re-organization by perfusion culture

The cytoskeleton of renal epithelial cells is known to
react to shear stresses. To confirm the cytoskeletal alter-
ation by perfusion culture, we examined the cytoskeletal
morphology between static and perfusion conditions by
F-actin staining. Indeed, the cytoskeleton in the perfu-
sion conditions showed re-organization compared to
that under static conditions (Fig. 6). F-Actin expression
in the renal epithelial cells was strong under both perfu-
sion culture conditions. Moreover, the basement point
of the cytoskeletal structure was clear in the 2.5 uL/min
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flow condition compared to that in the 10 uL/min flow
condition. By quantification of the F-actin structure in
the section, the positive area increased in the perfusion
organoid sections (Fig. 6h). These results implied that
renal organoids may be exposed to a small flow because
of the perfusion conditions.

Perfusion medium stimulated epithelial tubular formation
in renal organoids

Because the cytoskeleton of epithelial cells is associated
with hemidesmosome structures in the basement mem-
brane and cytokeratin, these structures were examined
by immunostaining of the renal organoids using laminin
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and CK 8 antibodies. Under static conditions, non-
uniform laminin expression was observed around the
epithelial tubules in renal organoids (Fig. 7 b). CK 8
expression was also easily detectable at the apical
(inner) side of the tubules (Fig. 7a). In contrast,
nearly uniform and continuous expression of laminin
was observed around the epithelial tubules under the
2.5 uL/min flow condition (Fig. 7e). CK 8 was clearly
observed at both apical sides of the tubules under
both perfusion conditions. Under the 10 pL/min flow
condition, a laminin-positive region was formed
around the epithelial tubules and was non-continuous
compared to that under the 2.5uL/min condition
(Fig. 6h). Moreover, CK 8 expression at the basolat-
eral side of the tubules was non-continuous under
the 10 uL/min perfusion condition. These immuno-
staining results suggest that the perfusion medium
stimulated basement membrane and cytokeratin re-
organization based on the perfusion volume.

To quantity CK8-positive epithelial tubular forma-
tion, the CK8-positive area in the tubule section area
was calculated from each image (Fig. 8 a—f). CK8 was
an intermediate filament in epithelial cells and associ-
ated with the epithelial cytoskeleton. The CK8-
positive area was increased at the 2.5 pL/min perfu-
sion rate (Fig. 8g). However, at the 10 pL/min perfu-
sion rate, CK8-positive tubules in the section were
not stable. Moreover, the number of tubule sections
in the whole section area was increased at the 2.5 pL/
min perfusion rate (Fig. 8h).

These results indicate that the air-liquid perfusion culture
system affected tubular organization in the renal organoids.

Discussion

In summary, a perfusion system maintained by an air-
liquid interface was developed to culture renal organoids
induced from hiPS cells (Figs. 1 and 2). The system per-
fused culture medium under the membrane which lifted
the organoid, resulting in low flux on the membrane
(Fig. 3) throughout the renal organoids while maintain-
ing the air-liquid interface (Fig. 4). Diffusion within the
organoid increased according to the flow rate (Fig. 5).
The perfusion condition may affect the microenviron-
ment in renal organoids and alter the cytoskeleton and
basement membrane (Fig. 7). This was correlated with
an altered frequency of epithelial tubules in the renal
organoid by the perfusion conditions (Fig. 8).

Switching to submerged conditions may affect the
established epithelial cell polarity in renal organoids at
12 days after 3D formation under an air-liquid interface
condition [23], and thus the tubule structure in the renal
organoids could not be maintained under submerged
conditions. To overcome this issue, our perfusion system
was used to perfuse culture medium under the renal
organoid while maintaining an air-liquid interface. An
increasing perfusion rate accelerated flux on the mem-
brane and diffusion medium in the organoid. Because
water pressure in the flow channel was higher than that
in the outlet channel, the medium flowed continuously.
This may cause vertical direction flow over and small
flux on the porous membrane. Alternatively, the perfu-
sion conditions may lead to increased cell mobility com-
pared to under static conditions. Indeed, because
ureteric bud cell branching and mesenchymal-epithelial
transition occurred in the renal organoids, the number
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of newly formed tubules increased in the organoids
under the perfusion condition (Fig. 8). Thus, perfusion
culture stimulated cell movement in the renal organoid,
and diffused culture medium in the organoid was
increased according to the perfusion condition.

Renal epithelial cells cultured under perfusion conditions
at the apical side exhibited cytoskeletal reorganization at 1
dyn/cm® shear stress. In endothelial cells, this re-
organization was induced by over 10 dyn/cm? shear stress.
Thus, renal epithelial cells are more sensitive to perfusion
stimulation than endothelial cells [18]. However, 0.5Pa

(mathematically 5 dyn/cm?®) shear stress was also reported
to cause cytoskeletal disruption in renal proximal epithelial
cells [24]. Based on previous studies and our results, an
adequate flow rate is required to maintain the structure of
renal proximal tubular cells. Particularly, in the metaneph-
ros, ureteric buds increased branching with membrane-
type matrix metalloproteinase (MT-MMP), MMP2, and
MMP9 expression in the metanephric mesenchyme [25].
These enzymes digest the basement membrane and allow
for elongation of branches. Secreted factors in the meta-
nephros include MMP as well as fibroblast growth factor 2
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(FGF2) and glial cell-derived neurotrophic factor [26].
These proteins diffused in the organoid via the perfusion
medium. Diffusion of growth factors may reduce their
effects on target cells, and thus may reduce tubules in the
10 pL/min flow rate condition compared to in the 2.5 puL/
min flow rate condition. The epithelial cell basement con-
taining laminin may possibly break at several points under
the 10 pL/min flow rate condition (Fig. 7g—i).

In renal development, the metanephros receives blood
perfusion from embryonic circulation. The metanephric
vasculature is reported to show high permeability such
that the perfused blood is leaked into the metanephros
stroma [22]. Nephron progenitors exist at the edge of
the metanephros, where they receive a low blood supply
from embryonic blood circulation. Thus, excessive diffu-
sion in the embryonic kidney may affect nephron pro-
genitors in the metanephros. Maternal circulation can
also affect embryonic circulation via the placenta. Mater-
nal conditions such as hypertension, diabetes, and low
nutrition may result in the development of low numbers
of nephrons and are associated with future diseases in

their offspring [27-29]. For example, maternal blood pres-
sure alterations in rats cause hypertension in their off-
spring [30]. While animal experiments reveal important
features of this phenomenon, species differences may also
occur. Thus, renal organoids from hiPS cells cultured for
a long time under perfusion culture simulating embryonic
circulation may also improve the understanding of embry-
onic circulation effects on renal development. This perfu-
sion system can be used to model embryonic renal
development as well as renal diseases.

Recently, an interesting renal organoid perfusion sys-
tem was reported [31] which demonstrated endothelial
cell network perfusion in the renal organoid. However,
the matrix gel was degraded and environment was al-
tered by including cells during cultivation. Because our
system without gel could be perfused at a constant rate
for a long time, it may also be suitable for maintaining
tissues such as the cornea and dermal skin tissue at the
air-liquid interface. For mature organ engineering,
gel-embed perfusion showed powerful effects as a
cultivation system. To achieve functional renal tissue
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engineering, an adequate matrix gel will be applied in
our culture system in the future.

Conclusions

In this study, an air-liquid interface perfusion system was
established for renal organoid in vitro cultivation. In this
system, low flux on the porous membrane occurred via per-
fusion medium under the membrane within renal organoid.
The diffusion also altered growth factor diffusion and renal
tubule organization. This perfusion cultivation system will
be improved to control the organization of tubule and
vascularization in the renal organoid in vitro.

Methods

Cell culture and renal organoid production

Human iPS cells (201B7, Lot No. 018) were obtained from
RIKEN BRC Cell Bank (Tukuba, Japan) [32] and cultured
on mouse embryonic fibroblast feeder cells (ReproCELL,
Inc., Kanagawa, Japan) in an incubator with 5% CO,. The
cells were then cultured using standard feeder-less cultiva-
tion procedures. Briefly, the cells were plated on Laminin
511 (imatrix-511, Matrixome, Inc., Osaka, Japan)-coated
culture dishes (35-mm diameter) and cultured with Stem-
Fit"AKO2N (ReproCELL). iPS cells were stocked in liquid
nitrogen and used for renal organoid induction from
passage 10 to 21. Renal organoids were produced as previ-
ously reported with some modifications [10]. Briefly (as
shown in Fig. 1 a), when undifferentiated hiPS cells were
cultured to approximately 50% confluence on 35-mm
diameter culture dishes, the culture medium was changed
to renal organoid-induction medium (Stemdiff APEL2
medium, STEMCELL Technologies, Inc., Vancouver, Brit-
ish Columbia) containing 8 uM CHIR99021 (FUJIFILM
Wako Pure Chemical Corporation, Osaka, Japan) and
cultivated for 4 days. The medium was then changed to
producing medium containing 200 ng/mL FGF9 and 1 pg/
mL heparin and cultured for 2 days. The cultured cells
were harvested with 0.5x TrypLE™ (Gibco, Grand Island,
NY, USA) as a cell suspension. The suspended cells were
collected in 1.5-mL tubes with 6.5x 10° cells/tube and
centrifuged at 400xg for 2 min to form pellets. After cen-
trifugation, the pellets were transferred onto cell culture
inserts (Falcon™ cell culture insert, 0.4-um pore size (1 x
10® pores /cm?) for a 12-well plate, Corning Inc., NY).
Renal organoid-induction medium containing 5pM
CHIR99021 and 10nM Rock Inhibitor was added only
under the cell culture insert and incubated with the pellets
for 1h. The medium was then replaced with renal
organoid-induction medium containing 200 ng/mL FGF9
and 1pg/mL heparin for 5days. After 5days of FGF9
treatment, the medium was replaced with renal organoid-
induction medium without any factors. The culture
medium was changed every 2 days and antibiotic agent
(Antibiotic-Antimycotic, Gibco) was always added to the
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renal organoid-induction medium. The cultured pellets
were grown as renal organoids until 12 days after pellet
formation (3D formation). For submerged culture, the
renal organoids were submerged in culture medium with
the insert membrane in a 12-well plate. Phase-contrast
images were captured with a phase-contrast microscope
(Nikon Corporation, Tokyo, Japan) connected to an Axio-
cam controlled by Axio vision software (Carl Zeiss AG,
Oberkochen, Germany).

Microbeads movement experiment

To evaluate flow on the membrane in the culture sys-
tem, we set up culture system without organoids but
with approximately 20 pL red fluorescence 10-um diam-
eter polystyrene microbeads (3.6 x 10° beads /mL, Fluo-
Spheres™, Thermo Fisher Scientific, Waltham, MA,
USA) suspended in 300 uL PBS on the membrane.
Movement was captured by time-laps fluorescence mi-
croscopy every 2s during 60-90s perfusion at 37 °C.
The pump speed (Icams lab) was changed to 2000, 1000,
500, 250, 100, 50, 25 pL/min. Movement series were cap-
tured twice at each speed. Time-lapse images were
traced for 5 beads per image (over 30 images per series)
with time-laps software (Aquacosmos 2.6, Hamamatsu
Photonics K.XK., Shizuoka, Japan) and the bead move-
ment speed (um/s) was calculated.

Measurement of glucose and lactic acid concentration in
culture medium

At 48h after cultivation, the medium directly under the
organoid was collected and stored at — 80 °C. Glucose and
lactic acid concentrations were examined by Oriental
Yeast Co., Ltd. (Tokyo, Japan). We calculated the concen-
tration rate both glucose and lactic acid using the value
obtained from the sham experiment medium (incubation
for 48 h in culture incubator) as a standard value (1 = 7).

Perfusion of renal organoids with the perfusion culture
system

Perfusion devices supported by the cell culture insert
were fabricated using a 3D-printer (EDEN; Object
Geometries Billerica, MA, USA). The devices were
placed into 6-well plates and connected to a microtube
pump (Icams Lab Co. Ltd., Iwate, Japan) with TIGON
Tubes. The complete perfusion system was placed in a
CO, incubator, and circulation of approximately 2.5 mL
induction medium was maintained with the renal orga-
noid at the air-liquid interface. As a control, support
devices (kindly gifted by Dr. Itoga) fabricated using
EDEN were used to adjust the total volume of the
medium while maintaining the air-liquid interface. The
medium for perfusion culture was changed every 2 days
after cultivation.
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Tracing of diffused medium using fluorescence labeled
dextran

To trace the perfusion of culture medium into the renal
organoids, the medium was changed to medium contain-
ing 0.5 mg/mL Texas Red-conjugated dextran (70,000
MW Molecular Probes, Eugene, OR, USA). For 2 days of
perfusion culture, the organoids were rinsed gently with
PBS twice to remove the remaining medium labeled with
dextran and fixed with 4% paraformaldehyde (Muto Pure
Chemicals, Co. Ltd., Tokyo, Japan) for 24h at 4°C. To
quantitatively analyze medium perfusion within the orga-
noid, 0.5pL of 1 mg/mL Texas Red-conjugated dextran
was dropped onto the center of the top of the organoid
using a micro-pipette. These organoids were cultured
under static or perfusion conditions for 2 days and then
fixed with 4% paraformaldehyde for 24 h at 4°C. Cryo-
blocks were prepared with OTC Compound (Sakura Fine-
tech Japan Co., Ltd., Tokyo, Japan). The blocks were
sectioned using a cryostat at 8 pm thickness. The sections
were dried and washed with PBS, and counterstained with
2 ug/mL Hoechst 33258 for 15min. The sections were
then washed, mounted, and analyzed by confocal laser mi-
croscopy with an FV1200 IX83 (Olympus, Tokyo, Japan).
Texas red-positive areas of the sections were evaluated
using Fiji software (1 = 4; NIH, Bethesda, MD, USA).

Immunohistochemistry

Cryosections of 2- or 3-day perfusion cultured renal orga-
noids were washed with PBS and blocked with 0.1% bo-
vine serum albumin/PBS (Sigma Aldrich, St. Louis, MO,
USA) for 1h. They were then incubated with Laminin
(L9393, Sigma-Aldrich), CK8 (ab9023, Abcam, Cambridge
UK), and podocalyxin (AF1658 R&D Systems, Minneap-
olis, MN, USA) antibodies at 4°C. After incubation, the
sections were washed with PBS and incubated with sec-
ondary antibodies (Jackson ImmunoResearch Laborator-
ies, Inc., West Grove, PA, USA) for 2 h. The sections were
washed with PBS, counterstained with 2 pg/mL Hoechst
33258 for 15min, washed again, and mounted. Images
were observed with a confocal microscope (Olympus).

Quantification of images

Alexa 488-conjugated phalloidin-stained and CK8 im-
munostaining images captured at 200x with a confocal
microscope. Three images per experiment were analyzed
using Fiji software. Separated colors associated with each
stain and tubule structure selected in the images were
used to measure area fractions. The phalloidin (F-actin)-
positive area in the whole section image and CK8-
positive area fraction in the selected tubule area was
calculated from the measurement. CK8-positive tubules
in the section area were counted. All area fractions or
frequencies are indicated as comparisons to the control
value in each experiment (1 = 3).
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Optical coherence tomography (OCT)

Three-dimensional images of the constructs were acquired
by optical coherence tomography (OCT) (IVS-2000) (San-
tec Corporation, Aichi, Japan). The step size is indicated
every 100 um on the vertical axis and every 200 um on the
horizontal axis in the images (Figs. 1c, 2d, i).

Gene expression

RNA in the organoids was extracted using a total RNA
extraction kit (PureLink™ RNA mini kit, Thermo Fisher
Scientific). cDNA was synthesized from 580 ng total
RNA using a High-capacity cDNA reverse Transcription
kit (Thermo Fisher Scientific). Real time PCR was per-
formed using Tagman probes for CDH, NHPS1, SIM1,
EMX2, and GATA3 on the Viia 7 real-time PCR system
(Thermo Fisher Scientific). Beta-actin was used as an in-
ternal standard for NHPS1 and CDH1. Gene expression
was quantified by the relative standard curve method
(n=3). For GATA3, SIM1, and EMX2, GAPDH was
used for an internal standard gene. Gene expression was
quantified by the AACt method (day 12 n=2, day 13
n=1, day 15 n=6). Calibration of these gene was con-
ducted in iPS cells.

Statistical analysis

The Tukey-Kramer HSD test was used to identify signifi-
cant differences among multiple test groups by JMP Pro
14 (SAS Institute, Cary, NC, USA). All tests were two-
tailed, and P < 0.05 was considered significant.

Additional files

Additional file 1: Gene expression of EMX2, SIM1 and GATA3 in the
induction renal organoid in static condition. Internal control was GAPDH.
(PPTX 52 kb)

Additional file 2: Microbeads movement movie on the membrane
during perfusion under the membrane. a) the illustration of the beads-
movement tracing experiments. b) beads movement movie on 04 um
pore size membrane by 50 uL/min flow rate. ¢) beads movement movie
on 3.0 um pore size membrane by 50 uL/min flow rate. (PPTX 773 kb)
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