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Detection of stretch reflex onset based on
empirical mode decomposition and
modified sample entropy
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Abstract

Background: Accurate spasticity assessment provides an objective evaluation index for the rehabilitation treatment
of patients with spasticity, and the key is detecting stretch reflex onset. The surface electromyogram of patients
with spasticity is prone to false peaks, and its data length is unstable. These conditions decrease signal differences
before and after stretch reflex onset. Therefore, a method for detecting stretch reflex onset based on empirical
mode decomposition denoising and modified sample entropy recognition is proposed in this study.

Results: The empirical mode decomposition algorithm is better than the wavelet threshold algorithm in denoising
surface electromyogram signal. Without adding Gaussian white noise to the electromyogram signal, the stretch
reflex onset recognition rate of the electromyogram signal before and after empirical mode decomposition
denoising was increased by 56%. In particular, the recognition rate of stretch reflex onset under the optimal
parameter of the modified sample entropy can reach up to 100% and the average recognition rate is 93%.

Conclusions: The empirical mode decomposition algorithm can eliminate the baseline activity of the surface
electromyogram signal before stretch reflex onset and effectively remove noise from the signal. The identification
of stretch reflex onset using combined empirical mode decomposition and modified sample entropy is better than
that via modified sample entropy alone, and stretch reflex onset can be accurately determined.

Keywords: Spasticity, Stretch reflex onset, Surface electromyography, Empirical mode decomposition, Modified
sample entropy

Background
Muscle spasticity is an intermittent or persistent involun-
tary excessive movement of the skeletal muscle caused by
an upper motor neuron injury [1]. Spasticity is clinically
manifested by an increase in passive stretching resistance,
i.e., an increase in muscle tension, and resistance increases
with passive stretching speed [2]. Accurate spasticity as-
sessment provides an objective evaluation index for the re-
habilitation treatment of patients with spasticity [3]. The
modified Ashworth scale is the most widely used method
for assessing spasticity in the clinical setting. It is simple
and easy to implement without the aid of instruments.
However, the modified Ashworth scale exhibits strong

subjectivity; thus, it cannot meet the requirements of ac-
curate spasticity assessment [4].
The tonic stretch reflex threshold is currently recog-

nized as the most effective and consistent value for
assessing spasticity [5]. The stretch reflex threshold rep-
resents the joint angle at which antagonist muscles or
motor neurons begin to contract when the affected
limbs of the subject are stretched passively [6]. The
starting point that corresponds to the beginning of con-
traction of antagonistic muscles or motor neurons is
called stretch reflex onset [7]. Surface electromyogram
(EMG) is a nonlinear and nonstationary signal obtained
from electrodes attached on the skin surface of muscles
[8]. The spasticity of a patient can be analyzed, and the
nerve components during an increase in muscle tension
can be distinguished by analyzing surface EMG signals.
Stretch reflex onset detection using surface EMG signal
is a prerequisite and basic step in biomedical research

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

* Correspondence: simenkouwang@sina.com
1School of Mechanical Engineering, Hefei University of Technology, No. 193
Tunxi Road, Hefei 230009, China
Full list of author information is available at the end of the article

BMC Biomedical EngineeringDu et al. BMC Biomedical Engineering            (2019) 1:23 
https://doi.org/10.1186/s42490-019-0023-y

http://crossmark.crossref.org/dialog/?doi=10.1186/s42490-019-0023-y&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:simenkouwang@sina.com


and clinical diagnosis, such as gait recognition, and auto-
matic prosthetic control [9–11]. It is crucial for detect-
ing the stretch reflex threshold of muscles when
assessing spasticity [12–14].
At present, the commonly used stretch reflex onset

detection method is based on experience or the standard
deviation (SD) of surface EMG signal [1, 15]. Experience is
too subjective [12], and the SD of surface EMG signal is
susceptible to the baseline activity of such signal [16]. SD
cannot achieve exact onset detection give the low signal-to-
noise ratio (SNR) of surface EMG signal in patients with
spasticity [17]. Detection methods based on time-domain
analysis and statistical characteristics, such as the Teager–
Kaiser energy operator and the maximum likelihood
method, have been effectively applied in recent years. The
Teager–Kaiser energy operator considers the amplitude
and instantaneous frequency of signals to improve the rec-
ognition rate of onset detection; however, it requires an ex-
tremely high SNR [18]. The maximum likelihood method is
commonly used for the onset detection of signals with low
SNR (SNR = 1); however, it is only suitable for processing
Gaussian noise [19]. Yang et al. combined Teager–Kaiser
energy operator with an image enhancement technique and
adopted morphological close operators to realize the accur-
ate onset detection of pathological surface EMG signals
with weak noise [20].
Sample Entropy is a method based on approximate

entropy that is used to measure the complexity of
time series. Sample entropy has been applied in
evaluating the complexity of physiological time series
and in diagnosing pathological state [21]. Zhou et al.
used sample entropy in the onset detection of muscle
activities and achieved good recognition effect in an
environment with background burr noise [22]. How-
ever, Sample entropy is highly dependent on data
length, and stability is hardly guaranteed when data
length is short [23–26]. Compared with the standard
sample entropy, the modified sample entropy exhibits
stronger dependence on data length and has a smaller
fluctuation in entropy value, making the former more
suitable for processing short-term surface EMG sig-
nals [27]. Considering the poor quality of surface
EMG signals in patients with spasticity, preprocessing
should be performed before the stretch reflex onset
detection of the modified sample entropy [28].
Empirical mode decomposition is the adaptive de-

composition of a signal into several intrinsic mode
functions in accordance with the time-scale character-
istics of data without presetting any basis function
[29]. The empirical mode decomposition method pro-
posed by Huang et al. can be applied to any type of
signal decomposition and exhibits evident advantages
in dealing with nonlinear and nonstationary EMG sig-
nals [30, 31]. Zhou et al. combined empirical mode

decomposition with soft thresholds to eliminate three
types of common noise in surface EMG signal: power
line interference, Gaussian white noise, and baseline
drift. The empirical mode decomposition denoising
has been proven to be better than those of other
digital filters, such as traditional infinite impulse re-
sponse filters [32].
Given the pathological symptoms of patients with

spasticity, abnormal overexcitement leads to discharges
of motor units, and consequently poor quality of surface
EMG signals. The surface EMG of patients with spasti-
city is prone to unconscious and involuntary false peaks,
which cause a slight difference in surface EMG signal
before and after the stretch reflex onset. Moreover, a
false EMG peak is mixed into the mutant signal after the
stretch reflex onset [33]. Therefore, a stretch reflex onset
detection method based on empirical mode decompos-
ition denoising and modified sample entropy recognition
is proposed in the current study. First, the denoising ef-
fects of the empirical mode decomposition and wavelet
threshold algorithms are compared through various
evaluation indices. Then, the surface EMG signal is
decomposed via empirical mode decomposition, and the
effective intrinsic mode function is extracted in accord-
ance with the correlation coefficient between each order
of the intrinsic mode function and the original signal.
The soft threshold is set to denoise the signal on the
basis of the surface EMG signal of the subjects in resting
state. Lastly, stretch reflex onset is identified using the
modified sample entropy. Gaussian white noise with
SNRs of 0, 5, 10, 15 and 20 dB is added. The accuracy
and robustness of this method and those of the modified
sample entropy are compared.

Results
Analysis of empirical mode decomposition denoising
effect
The semi-synthetic surface EMG signals of 10 patients with
spasticity were selected and compared with those of empir-
ical mode decomposition denoising via the wavelet thresh-
old denoising method. Among these signals, the wavelet
basis selected the sym4 basis function, which is relatively
similar to the surface EMG signals. Three evaluation indi-
ces were cited to compare the denoising effects of the two
methods, namely, SNR, root mean square error (R), and the
correlation coefficient (P).
Where SNR, R, and P are expressed as follows:

SNR ¼ 101g

XN
i¼1

xi tð Þ

XN
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N
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P ¼ cov xi tð Þ; yi tð Þð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D xi tð Þð Þ: D yi tð Þð Þp ð3Þ

xi(t) is the original signal, yi(t) is the signal after de-nois-
ing, and N is the number of sampling points. Cov() is
the covariance function, D() is the variance function.
When SNR is higher, the signal denoising effect is bet-

ter; when the value of R is smaller, the coincidence de-
gree between the denoised and original signals is higher;
when the value of P is larger, the correlation between
the denoised and original signals is stronger. The semi-
synthetic surface EMG signals of the 10 subjects were
selected, and the evaluation indices were obtained using
the two denoising methods (Table 1).
As shown in Table 1, the SNR and P of the empirical

mode decomposition denoised signals are higher, R is
smaller, the P value of wavelet threshold denoising fluc-
tuates considerably, and denoising performance is un-
stable. The experimental results indicate that the
empirical mode decomposition algorithm is better than
the wavelet threshold algorithm in denoising surface
EMG signal. The former exhibits stronger denoising
ability and better effect, and it can be used as an effect-
ive surface EMG signal denoising method.

Stretch reflex onset detection after denoising of EMG
signals
The semi-synthetic surface EMG signals of 25 pa-
tients with spasticity were selected, and the data of
each patient were added with 0, 5, 10, 15, and 20 dB
Gaussian white noise. The stretch reflex onset detec-
tion process based on empirical mode decomposition
denoising and modified sample entropy recognition is
described as follows.

(1) Soft threshold denoising of empirical mode
decomposition.

(2) The denoised surface EMG signal is processed via
frame processing with an active sliding window of
fixed length. The frame is shifted to one point to
calculate the modified sample entropy of each
frame.

(3) The entropy value is calculated. If the
corresponding entropy value at a certain time is
greater than the set soft threshold and 50
consecutive points are greater than the soft
threshold, then the moment is judged as the stretch
reflex onset.

The sliding window length is 32 ms under the optimal
parameters of the modified sample entropy, and the
threshold sensitivity value is 0.3–0.45. The sliding win-
dow length is 64 ms under the optimal parameters of the
modified sample entropy, and the threshold sensitivity
value is 0.5–0.6. The sliding window length is 96 ms
under the optimal parameters of the modified sample
entropy, and the threshold sensitivity value is 0.5–0.65.
The stretch reflex onset recognition rate of the modified
sample entropy in a noisy environment is provided in
Table 2. The stretch reflex onset recognition rate of the
modified sample entropy after empirical mode decom-
position denoising of the surface EMG signals is pre-
sented in Table 3. After empirical mode decomposition
denoising of the surface EMG signals, the stretch reflex
onset recognition rate was obtained under the optimal
parameter of the modified sample entropy is presented
in Table 4.
As shown in Figs. 1 and 2, the semi-synthetic surface

EMG signals of a patient with the modified Ashworth
scale level of 1+ were selected, and Gaussian white noise
that corresponded to an SNR of 20 dB was added. The
modified sample entropy values before and after denois-
ing were compared. The difference in the EMG signals

Table 1 The evaluation indexes of empirical mode decomposition and wavelet threshold denoising

Subjects empirical mode decomposition denoising Wavelet threshold denoising

SNR R P SNR R P

S1 26.2047 0.1662 0.9989 11.2057 0.9343 0.9614

S2 22.9088 0.1571 0.9975 8.3944 0.8345 0.9248

S3 18.7250 0.4779 0.9933 9.382 1.4012 0.9407

S4 22.8871 0.8001 0.9975 9.5812 3.702 0.9437

S5 23.3546 0.1599 0.9979 10.153 0.7311 0.9509

S6 22.3851 0.1446 0.9976 7.6112 0.792 0.9092

S7 23.1228 0.2509 0.9976 10.9289 1.0212 0.9588

S8 22.9941 0.1091 0.9976 7.0581 0.6835 0.8962

S9 22.1832 0.2532 0.9971 10.6279 0.9577 0.9558

S10 21.7441 0.2805 0.9967 11.9962 0.8615 0.9679
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before and after the stretch reflex onset increased after
empirical mode decomposition denoising as shown by
the signal time-domain and modified sample entropy di-
agrams. As indicated in Tables 2, 3, and 4, the stretch
reflex onset recognition rate gradually increased. The
average stretch reflex onset recognition rate of the modi-
fied sample entropy in a noisy environment is 35%, and
the average stretch reflex onset recognition rate of the
modified sample entropy after empirical mode decom-
position denoising of the surface EMG signals is 66%.
The average stretch reflex onset recognition rate under
the optimal parameters of the modified sample entropy
is 93% after empirical mode decomposition denoising of
the surface EMG signals. Without adding Gaussian
white noise to the EMG signals, the stretch reflex onset
recognition rate of the EMG signals before and after em-
pirical mode decomposition denoising was increased by
56%. The experimental results showed that the stretch
reflex onset recognition rate was significantly increased
after empirical mode decomposition denoising. In par-
ticular, the stretch reflex onset recognition rate can
reach up to 100% and the average recognition rate is
93% under the optimal parameters of the modified sam-
ple entropy. However, one study [34] reported that the
stretch reflex onset recognition rate of the Teager–Kai-
ser energy operator is 88%. For the signals with added
Gaussian noise, the stretch reflex onset recognition rate
was significantly increased after empirical mode decom-
position denoising. This result indicates that the empir-
ical mode decomposition algorithm can effectively
remove noise interference from surface EMG signals and
exhibits good anti-noise performance.

Discussion
Objective evaluation indices are provided for the rehabilita-
tion treatment of patients with spasticity through the
stretch reflex onset recognition method of combined

empirical mode decomposition denoising and modified
sample entropy recognition. The empirical mode decom-
position algorithm can remove noise from surface EMG
signals and retain useful information, and the soft threshold
of the empirical mode decomposition algorithm expands
the difference between the signals before and after the
stretch reflex onset. Although the modified sample entropy
can recognize stretch reflex onset, the poor quality of sur-
face EMG signals in patients with spasticity leads to a slight
difference in surface EMG signals before and after the
stretch reflex onset. Moreover, false EMG peaks are mixed
into the mutation signal after the stretch reflex onset. Thus,
EMG signals must be preprocessed before the stretch reflex
onset detection. For the surface EMG signals of patients
with spasticity, the performance of the stretch reflex onset
detection method using combined empirical mode decom-
position and the modified sample entropy algorithm is bet-
ter than that of the modified sample entropy algorithm
alone. The former is more suitable for clinical applications.

Analysis of results
We evaluated the denoising effect of the empirical mode
decomposition and wavelet threshold algorithms through
three evaluation indicators. The SNR and P values after
empirical mode decomposition denoising were higher
than the results after wavelet threshold denoising. The
root mean square error value was lower than the results
after wavelet threshold denoising. The experimental re-
sults show that the empirical mode decomposition algo-
rithm is better than the wavelet threshold algorithm in
denoising surface EMG signals. The former exhibits stron-
ger denoising ability and better effect, and it can be used
as an effective surface EMG signal denoising method. By
using the stretch reflex onset detection method of com-
bined empirical mode decomposition denoising and modi-
fied sample entropy recognition, the stretch reflex onset
recognition rate can reach up to 100% and the average
recognition rate is 93% under the optimal parameters of
the modified sample entropy. The stretch reflex onset rec-
ognition rate of combined empirical mode decomposition
denoising and modified sample entropy recognition is
considerably higher than that of modified sample entropy
recognition alone. The combination of empirical mode de-
composition and the modified sample entropy can be ap-
plied to detect stretch reflex onset in patients with
spasticity.

Table 2 Stretch reflex onset recognition rate of modified
sample entropy under noise environment

SNR = 0 SNR = 5 SNR = 10 SNR = 15 SNR = 20

32 ms 0.32 0.08 0.16 0.20 0.20

64 ms 0.48 0.20 0.44 0.56 0.52

96 ms 0.48 0.24 0.44 0.52 0.44

Table 3 Stretch reflex onset recognition rate of modified
sample entropy after denoising

SNR = 0 SNR = 5 SNR = 10 SNR = 15 SNR = 20

32 ms 0.84 0.36 0.36 0.52 0.44

64 ms 0.88 0.64 0.76 0.76 0.76

96 ms 0.80 0.64 0.76 0.68 0.72

Table 4 Stretch reflex onset recognition rate under Optimal
Parameters after denoising

SNR = 0 SNR = 5 SNR = 10 SNR = 15 SNR = 20

32 ms 0.96 0.84 0.92 0.88 0.88

64 ms 1 0.92 1 0.92 0.88

96 ms 1 0.88 1 0.96 0.84
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Study limitations
This study only analyzed the stretch reflex onset of sur-
face EMG signals. The quantitative assessment of upper
limb flexor spasticity is determined on the basis of the
tension stretch reflex threshold, which is determined on
the basis of surface EMG and joint angle signals [13, 14].

The tensile stretch reflex threshold depends on speed. In
this experiment, a certain velocity fluctuation occurs when
the doctor uniformly stretches a patient’s limbs. We plan
to design an isokinetic instrument that can measure spas-
ticity and eliminate the influence of velocity fluctuation.
Surface EMG signals are used in this study to analyze the

Fig. 1 The modified sample entropy under noise (SNR = 20 dB) environment

Fig. 2 The modified sample entropy after denoising
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stretch reflection threshold. We can also add a linear ac-
celeration sensor in the experiment to determine the
stretch reflection threshold through multiple parameters.
The sample size used in this experiment is small. In the
future, the sample size of patients with different spasticity
grades will be increased, and experiments will be con-
ducted at different stretch speeds to further comprehen-
sively verify the reliability of the stretch reflex onset
detection based on combined empirical mode decompos-
ition and the modified sample entropy.

Clinical implications
The upper limb spasticity assessment system based on
surface EMG signals is simple and convenient to use in
spasticity assessment in the clinical setting. The empirical
mode decomposition and modified sample entropy algo-
rithm exhibit satisfactory clinical applicability for the
pathological surface EMG signals of patients with spasti-
city. Accurate spasticity assessment provides an objective
evaluation index for the rehabilitation treatment of pa-
tients with spasticity. On the one hand, it can objectively
reflect the rehabilitation status of stroke survivors. On the
other hand, it can assist in adjusting treatment programs
and formulating personalized rehabilitation programs.
The realization of clinically accurate stretch reflex onset
and the measurement of stretch reflex intensity can help
understand the spasticity and pathological mechanism of
increased muscle tension, track the rehabilitation of pa-
tients with spasticity, and screen targeted reasonable treat-
ment programs.

Conclusion
A stretch reflex onset detection method based on com-
bined empirical mode decomposition and modified sam-
ple entropy was proposed to address the problem of
EMG signals in patients with spasticity. On the basis of
empirical mode decomposition denoising and modified
sample entropy recognition experiments, the following
conclusions were drawn from this study. 1) The empir-
ical mode decomposition algorithm is better than the
wavelet threshold algorithm in denoising surface EMG
signals because it can retain useful information and ef-
fectively remove noise from surface EMG signals. 2)
Gaussian white noise with different SNRs was added to
the original signal, and the results showed that empirical
mode decomposition exhibits good anti-noise perform-
ance and its denoising capability is helpful in the stretch
reflex onset detection. The stretch reflex onset recogni-
tion rate of combined empirical mode decomposition
denoising and modified sample entropy recognition is
considerably higher than that of the modified sample en-
tropy alone. The stretch reflex onset recognition rate
under the optimal parameters of the modified sample en-
tropy can reach up to 100% and the average recognition

rate is 93%. In summary, the empirical mode decompos-
ition algorithm can effectively remove noise from surface
EMG signals, and the stretch reflex onset detection rate of
combined empirical mode decomposition and the modi-
fied sample entropy is high. Thus, accurate and reliable
stretch reflex onset detection can be realized, and a new
method for the objective and accurate evaluation of spasti-
city is provided.

Methods
Experimental
The surface EMG signals of biceps brachii during the
passive extension of the upper limbs were collected from
patients with spasticity. The subject sat upright while
the doctor passively stretched the upper limb of the af-
fected side of the subject, allowing the upper limb to
adapt to the traction speed. Sudden traction was pre-
vented from causing tension in the subjects that might
affect experimental data. At the end of the preparatory
activity, the doctor collected the surface EMG signals of
each subject at an appropriate uniform speed on the
basis of experience, and the process was repeated four
times at 2 min intervals. Reacquisition was performed
after 1 day. The elbow joint was fixed with one hand,
and the wrist joint was held with the other hand. The
passive traction of the subject from the maximum bend-
ing angle to the maximum extension angle was com-
pleted. Spasticity is velocity-dependent; thus, the
fluctuation of the stretching speed must be maintained
within a certain range during the experiment.
The EMG signal sensor used in the experiment was

based on the hardware circuit and software design of a
single-chip microcomputer (STM32). The collected ana-
log signals were A/D converted and then transmitted to
the upper computer. The data sampling frequency was
1000Hz. The positive and negative electrodes of the elec-
trode sheet were attached to the biceps muscle at 2 cm in-
tervals. The reference end was attached to the side of the
biceps. The experimental procedure is illustrated in Fig. 3.
A total of 25 eligible stroke survivors from the Anhui

Provincial Hospital were selected for the experiment.
The study was approved by the Anhui Provincial Hos-
pital Ethics Committee, and all the participants provided
informed consent. Among the subjects, 11 belonged to
the modified Ashworth scale 1, 7 to the modified Ash-
worth scale 1+, and 7 to the modified Ashworth scale 2.
Inclusion criteria: patients with upper limb flexor spasti-

city caused by stroke; can sit independently; an elbow
flexion and extension range of at least 90°; clear conscious-
ness, without serious cognitive and audiovisual impairment,
can cooperate with the examination to complete simple
instructions.
Exclusion criteria: patients with central nervous system

disorders, such as multiple sclerosis and other diseases
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that may cause spasticity of the limbs; patients with dis-
eases that can affect the movement of the elbow joints of
the upper limbs, such as fracture of the upper limbs; pa-
tients with the modified Ashworth scale grades of 0, 3,
and 4.

Empirical mode decomposition
The empirical mode decomposition method proposed by
N.E. Huang is based on the time-scale characteristics of
data for signal decomposition without setting any basis
function [31]. The original signal is decomposed into a
number of narrow-band components, and each compo-
nent is called intrinsic mode function. The decompos-
ition result consists of several intrinsic mode functions
and one residual signal.

s tð Þ ¼
X

imf i tð Þ þ rn tð Þ; ð4Þ

Each intrinsic mode function should meet the follow-
ing conditions [31]:

(1) The number of extreme points and zero crossings
in the entire dataset should not be more than one.

(2) The mean values of the upper and lower envelopes
should be zero at any point.

However, actual signals are complex, and thus they do
not satisfy the aforementioned conditions. Therefore,
Huang made the following assumptions [31]:

(1) Any signal is composed of several intrinsic mode
functions.

(2) Each intrinsic mode function can be linear or
nonlinear. The numbers of local zeros and extreme

points of each intrinsic mode function are the same,
and the upper and lower envelopes are locally
symmetric with respect to the time axis.

(3) Each signal can contain several intrinsic mode
functions at any time. If the modal functions
overlap with one another, then a composite signal is
formed.

The empirical mode decomposition algorithm assumes
that a signal is composed of several intrinsic mode func-
tions. First, all the maximum and minimum points in
the original signal s(t) are extracted. Then the upper en-
velope e+(t) and the lower envelope e−(t) are fitted by a
cubic spline function. Lastly, the mean values of the
upper and lower envelopes are calculated as follows:

m tð Þ ¼ eþ tð Þ þ e tð Þ
2

; ð5Þ

The difference between the original signal and the
mean envelope is calculated as follows:

h11 tð Þ ¼ s tð Þ ¼ m1 tð Þ; ð6Þ

If h1(t) meets the preceding intrinsic mode function
conditions, then h1(t) can be used as the first-order in-
trinsic mode function. If the preceding intrinsic mode
function conditions are not met, then h1(t) is used as the
input and the aforementioned steps are repeated. As-
sume that h1

k(t) meets the preceding intrinsic mode
function conditions after k times. Then, h1

k(t) is used as
the first-order intrinsic mode function of the original
signal as follows:

Fig. 3 The evaluation process of Spasticity
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c1 tð Þ ¼ hk1; ð7Þ
The difference between the original signal s(t) and the

first-order intrinsic mode function can be calculated as
follows:

r1 tð Þ ¼ s tð Þ−c1 tð Þ; ð8Þ
c1(t) is derived repeatedly to enable r1(t) to obtain a

second-order component, i.e., c2(t). Empirical mode de-
composition stops when the N-th order intrinsic mode
function component cn(t) or the remaining amount rn(t)
is less than a preset value, or when the residual compo-
nent rn(t) is a monotonic function or a constant.
Lastly, empirical mode decomposition decomposes the

original signal into x(t) as follows:

x tð Þ ¼
Xn
i¼1

ci tð Þ þ ri tð Þ ð9Þ

Surface EMG signal denoising based on empirical mode
decomposition
Before the stretch reflex onset surface EMG signal of pa-
tients with spasticity exhibits involuntary muscle activities
and is mixed with noise during the acquisition process.
Consequently, the difference in EMG signal before and
after the stretch reflex onset is reduced, and the probabil-
ity of the stretch reflex onset misjudgment is increased.
To eliminate the baseline activity and high-frequency
noise components of surface EMG signal, the surface
EMG signals of the subjects with non-autonomous activ-
ities in resting state were set as the soft threshold. Inspired
by the soft threshold function in [12], the soft threshold
setting rule is presented as follows:

η IMFij
� � ¼ sign IMFij

� �
IMFij

�� ��−λi� �
þ; ð10Þ

where η (IMFij) denotes the j-th value in the i-th-order
intrinsic mode function component after denoising, IMFi
represents the i-th-order intrinsic mode function com-
ponent that should be preprocessed, λi indicates that
each intrinsic mode function is filtered with two SDs of
the surface EMG signal at rest, and (∙)+ designates the
positive portion.
The SD of surface EMG signals is twice larger than

that of baseline signals in the stretch reflex onset [13].
The SD of IMFi after the stretch reflex onset is twice
greater than that of the intrinsic mode function in rest-
ing state. Therefore, pretreatment can effectively elimin-
ate involuntary muscle activities generated during
spasticity evaluation, reduce the baseline activity and
noise interference of the surface EMG signals before the
stretch reflex onset, and expand signal difference before
and after the stretch reflex onset.

First, the correlation between each intrinsic mode
function component and the original signal s(t) is calcu-
lated, and the effective components are selected in ac-
cordance with the correlation results for filtering. The
specific processes are as follows:

(1) First, the original signal is normalized, and then the
signal is decomposed via empirical mode
decomposition to obtain IMFi.

(2) The correlation between intrinsic mode function
and the original signal of each order is calculated.
In accordance with the magnitude of the
correlation, the effective component is found with
the soft threshold of one-tenth of the maximum
correlation coefficient, and the pseudo-component
is eliminated.

(3) Filtering is performed on the effective component,
and the signal is reconstructed after filtering to
reduce the noise of the original signal.

Modified sample entropy
Sample entropy reflects the probability of generating
new information in a nonlinear dynamic system. The
definition of standard sample entropy, shows that any
distance greater than the similar tolerance r is discarded,
and only the number of distances less than or equal to
the similarity tolerance r is retained. The similarity of
vectors is based on the Heaviside function [21, 35–37].
The boundary between various types of signals in an

actual physical environment is unclear; thus, determin-
ing whether the input sample completely belongs to a
certain class is difficult. In addition, the distance fluctu-
ation in an actual surface EMG signal sequence is ex-
tremely large, and the slight fluctuations of d and r may
also cause violent fluctuations in the output entropy
value. Therefore, the standard sample entropy is insuffi-
cient for processing surface EMG signals. From [24], the
function is defined on the basis of the sigmoid function
as follows:

f d; rð Þ ¼ 1
1þ exp d−rð Þ=r½ � ; ð11Þ

where d is less than r; and the closer to zero, the closer
the output value is to 1. d is greater than r; and the
greater the difference, the closer the output value is to
zero. The modified sample entropy is described as fol-
lows [21, 24, 38].
For a given N-point time series x(n) = {x (1), x (2), …,

x(N)}, the modified sample entropy algorithm is calcu-
lated as follows.
The continuous m values in each frame signal se-

quence constitute an m-dimensional vector, where
Xm(i) = [x(i); x(i + 1); …; x(i +m − 1)], 1 ≤ i ≤N–m + 1.
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The distance dm
ij between the two vectors Xm(i) and

Xm(j) (1 ≤ j ≤N −m, j ≠ i) is defined as follows:

dm
ij ¼ d Xm ið Þ;Xm jð Þ½ �
¼ max

k∈ 0;m 1½ �
x iþ kð Þ− jþ kð Þj jf g; ð12Þ

The similarity Dm
ij between Xm(i) and Xm(j) can be cal-

culated by providing a similar tolerance r as follows:

Dm
ij ¼ f dm

ij ; r
� �

¼ 1

1þ exp dm
ij

� �
−r=r

h i ð13Þ

The function Bm
r can be calculated as follows:

Bm
r ið Þ ¼ 1

N−m−1

XN−m

j¼1; j≠i

Dm
ij ; ð14Þ

Bm
r ¼ 1

N−m

XN−m

i¼1

Bm
r ið Þ; ð15Þ

Similarly, the function Am
r can be determined by chan-

ging the vector dimension m to m+ 1 as follows:

Am
r ið Þ ¼ 1

N−m−1

XN−m

j¼1; j≠i

Dmþ1
ij ; ð16Þ

Am
r ¼ 1

N−m

XN−m

i¼1

Am
r ið Þ; ð17Þ

Lastly, the modified sample entropy (mSampEn) can
be defined as

mSampEn m; r;Nð Þ ¼ −1n
Am
r

Bm
r

� 	
ð18Þ

Stretch reflex onset recognition based on the modified
sample entropy
The modified sample entropy depends on N, m, and r.
In accordance with the empirical value [22, 24], m is 2
and r is generally (0.1–0.25) SD(X). When X is the data
of each frame, r is the local similarity tolerance. When X
is the total data, r is the global similarity tolerance. Stud-
ies have confirmed that global similarity tolerance is
more suitable for surface EMG signal mutation point de-
tection than local similarity tolerance [22]. A previous
study [39] verified that the result was optimal when r
was 0.25 × SD(X). In conclusion, the current study sets r
as the global similar tolerance, and takes 0.25 × SD(X).
The sliding window length N ranges from 32ms to 96
ms, with an interval of 32 ms.
The stretch reflex onset of the surface EMG signal of

biceps brachii is determined using the modified sample
entropy. The surface EMG signal is divided into frames

by using a sliding window, and each frame is shifted to
one point. The modified sample entropy of each frame
signal is calculated as mSampEn. The adaptive threshold
Th is set in accordance with Formula (19). The value of
mSampEn lower than Th is set as zero and the value of
mSampEn larger than Th is retained. The moment is
judged as the stretch reflex onset when the value of
mSampEn is greater than zero at a certain time and 50
consecutive mSampEn values are all greater than zero.
The threshold sensitivity value α ranges from 0.3 to 0.65,
with an interval of 0.05.

Th ¼ min mSampEnð Þ
þ a max mSampEnð Þ− min mSampEnð Þ½ �;

ð19Þ

The semi-synthetic surface EMG signal is selected.
That is, the stretch reflex onset of the surface EMG sig-
nal is known, and thus the stretch reflex onset detection
capability of combining empirical mode decomposition
denoising with the modified sample entropy is verified.
The semi-synthetic surface EMG signals consist of two
types. The first type is the surface EMG signal of sub-
jects in resting state, and the second type is the surface
EMG signal of subjects with spasticity. The signal dur-
ation of each group is 3000ms. The interval [− 50, + 50]
is selected on the basis of the stretch reflex onset that is
set in advance. If the detection result is within the inter-
val, then it is considered true detection (TD). If it is be-
yond the interval, then it is considered false detection
(FD). The recognition rate is defined as:

recognition rate ¼ TD
TDþ FD

ð20Þ
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