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Abstract 

Background: For brain tumors, identifying the molecular subtypes from magnetic resonance imaging (MRI) is 
desirable, but remains a challenging task. Recent machine learning and deep learning (DL) approaches may help the 
classification/prediction of tumor subtypes through MRIs. However, most of these methods require annotated data 
with ground truth (GT) tumor areas manually drawn by medical experts. The manual annotation is a time consuming 
process with high demand on medical personnel. As an alternative automatic segmentation is often used. However, it 
does not guarantee the quality and could lead to improper or failed segmented boundaries due to differences in MRI 
acquisition parameters across imaging centers, as segmentation is an ill‑defined problem. Analogous to visual object 
tracking and classification, this paper shifts the paradigm by training a classifier using tumor bounding box areas in 
MR images. The aim of our study is to see whether it is possible to replace GT tumor areas by tumor bounding box 
areas (e.g. ellipse shaped boxes) for classification without a significant drop in performance.

Method: In patients with diffuse gliomas, training a deep learning classifier for subtype prediction by employ‑
ing tumor regions of interest (ROIs) using ellipse bounding box versus manual annotated data. Experiments were 
conducted on two datasets (US and TCGA) consisting of multi‑modality MRI scans where the US dataset contained 
patients with diffuse low‑grade gliomas (dLGG) exclusively.

Results: Prediction rates were obtained on 2 test datasets: 69.86% for 1p/19q codeletion status on US dataset and 
79.50% for IDH mutation/wild‑type on TCGA dataset. Comparisons with that of using annotated GT tumor data for 
training showed an average of 3.0% degradation (2.92% for 1p/19q codeletion status and 3.23% for IDH genotype).

Conclusion: Using tumor ROIs, i.e., ellipse bounding box tumor areas to replace annotated GT tumor areas for train‑
ing a deep learning scheme, cause only a modest decline in performance in terms of subtype prediction. With more 
data that can be made available, this may be a reasonable trade‑off where decline in performance may be counter‑
acted with more data.
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Introduction
The most common type of brain tumor is called diffuse 
glioma and is the reason of 80% of malignant brain tumors 
[1]. Depending on the aggressiveness of the tumor, World 
Health Organization (WHO) has categorized them into 
grades 2-4 where higher grade means more malignant 
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tumors, and classified as either astrocytomas and oligo-
dendrogliomas [2]. Traditionally, the grade 2 gliomas are 
referred to as low-grade gliomas (LGG) and grade 3-4 as 
high-grade gliomas (HGG). Additionally, recent findings 
on molecular biomarkers have revised WHO grading to 
its further subtypes. According to this, isocitrate dehy-
drogenase (IDH) mutation and 1p/19q codeletion are the 
hallmarks of the dLGG subtypes which beyond classifi-
cation also provides important information concerning 
prognosis and response to therapy [3]. IDH mutations 
are detected in 70-80% of dLGG [4]. The survival rate for 
dLGG IDH mutated patients are higher than IDH wild-
type patients and plays an important role in prognosis 
and clinical decisions. This observation has also caused 
dLGG IDH wild-type with molecular features of glio-
blastoma to be classified as gliobalstomas [5]. Also, in 
IDH mutated astrocytomas the prognostic importance 
of extensive cytoreductive surgery is highly convincing 
[6–9]. Codeletion of 1p/19q is a characteristic of oligo-
dendrogliomas and is a favourable prognostic molecular 
marker. Since oligodendrogliomas are more sensitive to 
oncological treatment [8, 9], the role of extensive resec-
tion have been discussed and surgical management could 
be directly affected by knowing dLGG subtype. There-
fore, precisely knowing the molecular marker prior to 
surgery would be of practical value. Recently non-inva-
sive classification methods have shown promising results 
in prediction of glioma-subtypes based upon pre-opera-
tive imaging [10–13]. Non-invasive methods are opening 
up to discuss tailored therapies that would assist the sur-
geons and patients in the shared decision making process 
[14]. However, many challenges remain before bringing 
these tools into clinical practice.

Accurate tumor boundaries are important, since pix-
els within tumor boundaries are labeled as tumor for the 
supervised training of glioma. Using incorrectly labeled 
pixels for supervised training could lead to reduced test 
performance of classifier for distinguishing tumors. 
This pre-processing step helps more accurate super-
vised training of tumor tissues. Drawing tumor bounda-
ries manually by medical experts is a tedious task often 
requiring clinicians with anatomical and physiologi-
cal expertise. Apart from being time consuming task, it 
makes this procedure prone to intra and inter observer 
variability [15, 16]. Automatic segmentation is an alter-
nate way to manual annotation. Studies have been con-
ducted for automatic and semi-automatic segmentation 
of tumors to overcome the time and radiologist con-
straints e.g. support vector machine [17], decision tree 
[18], conditional random forest [19], mean shift [20], 
graph cut algorithm [21], level set method [22] and many 
more. Recently, DL has gained much attention for its 
high performance in segmentation of medical images 

[23, 24]. The most frequently used model for character-
izing visual objects and learning dense characteristics of 
images is Convolutional Neural Network (CNN) [25]. 
Relevant works that include segmentation are, among 
others, U-net [26], patch-based CNN [27] or patch-
based multi-scale CNN [28]. However, these methods 
do not guarantee the quality and could lead to improper 
or failed segmented boundaries making the segmenta-
tion process an ill-defined problem. These approaches 
are often dependent on the quality and representation of 
the features and sometimes require physician interven-
tion to identify the most important features, if automatic 
segmentation fails [25]. Moreover, the devices and proto-
cols used for acquisition of MRIs can vary dramatically 
on brain scans causing intensity biases and other varia-
tions of brain scans in a dataset. These issues may lead 
to ambiguous ROIs (regions of interest) in segmentation 
that subsequently affect the diagnosis or classification. 
Most deep learning segmentation methods are based 
on supervised learning which requires annotated GT 
(ground truth) tumor regions for training. Many medical 
imaging datasets lack the GT tumor annotations that lim-
its the use of those datasets. It is worth noting that using 
bounding boxes for object tracking [29] and classification 
have been successfully applied on visual images to bypass 
the ambiguity issues in automatic segmentation. How-
ever, this idea is rarely applied in MRI-based diagnosis.

For glioma classification, DL offers an automatic way 
to learn features. In the past few years, several DL meth-
ods have been successfully introduced for such applica-
tions. Chang et  al. [30] introduced a method that uses 
residual CNNs for the prediction of IDH mutation using 
four modalities of MRI data. Li et al. [31] trained a 6 layer 
CNN for tumor segmentation on GT tumor data. Then 
features from the last fully connected layer were size 
normalized by Fisher vector coding followed by a SVM 
classifier for IDH mutation prediction. Liang et  al. [32] 
suggested to use more advanced DenseNets using 3D 
MRI scans for IDH mutation prediction and obtained 
good performance for glioma grading. Yogananda et  al. 
[13] proposed an approach on training from scratch 
3D-Dense-UNets for performing classification and seg-
mentation simultaneously for IDH mutation status and 
proved that network trained on FLAIR-MRIs gives the 
same performance as when trained on multi-contrast 
MRIs (T2, FLAIR and T1ce) on TCGA dataset with 214 
patients. Then, in [12] they used the same trained net-
work in transfer learning for 1p/19q codeletion predic-
tion with 368 patients with T2-MRIs.

Our work is mainly motivated for the prediction of 
diffuse glioma-subtypes by shifting the paradigm in 
supervised training by using tumor ROIs specified by 
bounding box areas e.g., ellipse shaped around the 
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tumors instead of accurate tumor boundaries. Although, 
manual GT annotation has been the best way to allocate 
ROIs, it is a time consuming process and needs medical 
expertise. Likewise, automatic segmentation comes with 
its own challenges because it is an ill-defined problem 
and doesn’t always guarantee accurate tumor bounda-
ries. Inspired by computer vision community’s successful 
research on visual object tracking and classification using 
bounding boxes, this paper attempts to shift the study 
through an alternate paradigm for MRI-tumor subtypes 
prediction where supervised training in DL scheme uti-
lizes the bounding box areas on MRI medical data. To the 
best of our knowledge, it is the first time that such a strat-
egy has been successfully adopted for diffuse glioma-sub-
type prediction and comparing the performance to those 
trained on GT tumor areas. In this work, we used tight 
ellipse bounding boxes for locating brain tumor areas, in 
such a way that surrounding tissue does not cause much 
deterioration of the features in identifying the subtypes of 
diffuse gliomas. We show that a glioma-subtype classifier 
trained by using tumor bounding box areas may achieve 
comparable performance, with a slight performance deg-
radation of about 3.0% averaged on 2 dataset results.

Overview of a DL classification scheme: 2D 
multi‑stream CNN classifier
We adopted the classifier from a previous work [46] 
as a DL prediction scheme for the feature learning and 
classification of glioma-subtypes. Considering the mod-
erate and small sizes of training datasets, we choose a 
2D MRI slice-based classifier as: (a) due to the curse of 
dimensionality, one has to significantly increase the size 
of MRI training dataset to avoid the over-fitting, if high 

dimensional 3D volume data is used as the input; (b) 
using slice based approach could significantly reduce the 
computations by only processing a few slices contain-
ing the tumor. For the sake of convenience to the read-
ers, a brief overview of the classifier is given in Fig. 1. The 
deep network uses number of streams based on the MRI 
modalities used. Each stream consists of 6 convolutional 
layers with filter size 3 ×3 in each layer. Let the feature 
maps with their modality specific characteristics from 
all streams be denoted as F1,F2,F3 and F4 respectively. 
These features are extracted from the last convolutional 
layers followed by the feature information fusion layers, 
where the features are fused together as F=F1⊙F2⊙F3⊙F4 
at aggregation layer and are compactly represented at 
bilinear layer as y=FTF. The final refined feature map is 
followed by 2 fully connected layers with random ini-
tialization and dropout regularization that ends at a final 
layer for glioma-subtype class prediction.

Proposed method
In this section, we describe the proposed approach where 
tumor ROIs are employed as the inputs for training the 
DL scheme. First, the approach for tumor subtype pre-
diction and performance comparison are described. Then 
the selection of ellipse bounding boxes as tumor ROIs is 
described.

Glioma‑subtype prediction based on the DL scheme 
trained by tumor ROIs
The proposed strategy introduces ellipse shaped bound-
ing boxes as ROIs to occupy all the tumor areas. Figure 2 
shows the block diagram of the pipeline for glioma-sub-
type prediction based on two datasets: TCGA (public 

Fig. 1 Multi‑stream 2D convolutional neural network for glioma‑subtype classification from [46]
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dataset) and US (clinical dataset). Two modalities (FLAIR 
and T1ce) from US dataset are used for case study-A 
and four modalities (T1, T2, FLAIR and T1 contrast 
enhanced (T1ce)) are used from TCGA dataset for case 
study-B. In order to find how well the proposed strategy 
performs compared to that of using GT annotated data, 
a comparison of the performance of the classifier was 
examined against each training data type. Firstly, the clas-
sifier was trained and tested on ellipse tumor bounding 
box data. Secondly, the same experiment was repeated by 
training on the manually annotated GT tumor data.

From Fig. 2, input 2D multi-modality MRIs are fed to 
tumor ROI selection block, as shown in blue dotted box. 
When this block receives input 2D MR images from 
point a, it processes them to output point a’ by introduc-
ing a tight ellipse bounding box around the tumor area. 
Then, the multi-stream 2D Convolutional neural network 
is trained on the selected ROIs to learn features from 
each of the corresponding multi-modality MRIs. After 
the model is trained, during testing phase, the prediction 
is obtained from the test data with ellipse tumor bound-
ing box areas obtained at point a’. To check the classifi-
cation performance with that trained by GT annotated 
data, MRIs are given at point b for GT ROIs selection and 
are processed further at point b’ in the blue dashed block. 
Following this, the network is trained and tested accord-
ingly. Finally, the test accuracy on both the data types are 
compared. This procedure is repeated separately for each 
of the datasets.

Tumor ROI selection: ellipse bounding box
In this part, we shall give further details of the blue 
dashed box from Fig. 2. DL is computationally expensive 
and brain MRIs are complex that consist of many ana-
tomical details. Typically, a full 2D slice image isn’t use-
ful to detect subtype of gliomas on molecular level. The 
tumor areas can be better focused for a faster and more 

accurate model training. As brain tumors show great 
variations in shape, size and intensity, a tight ellipti-
cal shaped bounding box is introduced surrounding the 
tumor. In this work, tight elliptical bounding boxes are 
obtained manually. As mentioned in [34–36], we believe 
that this strategy helps to capture certain amount of 
information not only in tumor region but also informa-
tion from the surrounding tissue that may not cause a 
major problem in recognition of glioma-subtypes. Tumor 
area selection using ellipse bounding box is shown in 
Fig. 3 for 3 directional views of a FLAIR-MRI. As FLAIR-
MRIs present visually better tumor contrast with its sur-
rounding tissues, a tight ellipse bounding box is drawn 
manually with the help of 8 points whose positions are 
adjusted in accordance with the shape of the tumor. The 
binary tumor mask generated from this procedure is then 
applied to the other modalities of the patient to generate 
ellipse shaped tumor data for all modalities.

From Fig. 2, the other way to separate the tumor region 
is by simply masking out the tumor area if the GT anno-
tation is available for the dataset. This generates GT 
data with manually drawn tumor boundary discarding 
the surrounding non-tumor tissues. In Fig.  4, examples 
on ellipse boxed tumor area and GT annotated area are 
shown for FLAIR-MRI modality.

Results and comparisons
Setup: Experiments were implemented using Keras 
library [33] with Tensor Flow backend on a workstation 
with Intel-i7 3.40GHz CPU, 48G RAM and an NVIDIA 
Titan Xp 12GB GPU. By tuning the network carefully 
through experiments, different parameters were selected. 
Learning rate was set to 1.0e−4. Optimizer used was 
Adagrad. Batch size was set to 16. We used L2-norm 
regularization with the value of parameter selected as 
1.0e−4 for convolutional layers of each stream. The cat-
egorical cross-entropy was used as a loss function for 

Fig. 2 The pipeline of the method based on proposed strategy. Blue dash box: Tumor areas separated by ellipse bounding box and manually 
drawn GT boundary. Orange arrow: Training phase. Blue arrow: Testing phase
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evaluating the final performance. Here, we adapted early 
stopping strategy when the best validation performance 
was achieved. The random dropout rate was set to 0.5 for 
two fully connected layers for TCGA dataset and 0.6 for 
US dataset. Simple data augmentations such as horizon-
tal flipping and random rotation (maximum at  10∘) were 
used by Keras function ImageData Generator in real time 
to minimize the memory usage during training.
Datasets: Two datasets were used in the experiments 

for glioma-subtype prediction as shown in Table  1. One 
is a clinical dataset from Department of Neurosurgery, 

University of San Francisco, California (UCSF), referred 
to the US dataset in this paper. The other is TCGA data-
set from TCGA-GBM (n = 101) [37] and TCGA-LGG (n 
= 66) [38] with IDH genotype labels. The MRI-modalities 
and the number of patients used for each of the datasets 
are given in Table  1(a). Unlike TCGA dataset, US data-
set consists of only dLGG (Who grade 2) with the typi-
cal appearance of non-enhancing hyper-intensive ROIs in 
FLAIR images and without significant contrast enhance-
ment. The ground truth annotation or tumor mask for 
TCGA dataset is publicly available. For US dataset, tumor 

Fig. 3 Illustration of selection of ROIs with tight ellipse bounding box for a FLAIR‑MRI from US dataset for all three directional views. The blue line 
defines the tumor area contour

Fig. 4 An example of TCGA dataset from IDH mutation class. Separation of ROIs is shown in both ways (using ellipse bounding box and GT) on 
FLAIR modality. Left: Axial view. Right: Sagittal view

Table 1 Summary of Two Datasets (a) Number of 3D scans in each datasets. (b) Description of data for two case studies

*Excluded with augmented slice images

(a)
Dataset T1ce FLAIR T1 T2
US 75 75 ‑ ‑

TCGA 167 167 167 167

(b)
Case Study Glioma Subtype #3D/2D∗(Training) #3D/2D∗(Validation) #3D/2D∗(Testing)
A 1p/19q cod 25/450 8/144 9/162

1p/19q non‑cod 20/360 6/108 7/126

B IDH‑mut 33/594 11/198 11/198

IDH‑wt 68/612 22/198 22/198
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boundaries were drawn manually through the help of 3D 
slicer tool (v4.10.2) [39] and all annotation was controlled 
by the senior medical doctor (ASJ), having extensive expe-
rience in LGG research and segmentation. The datasets 
consist of 3D brain scans where 2D image slices from all 
three views (axial, sagittal and coronal) were extracted for 
our experiments. Each dataset was split patient wise into 3 
sets: training (60%), validation (20%) and testing (20%) such 
that no images of a patient from one set is used in another. 
For each run, patients were selected randomly for each of 
the sets and the results of multiple runs were averaged for 
the final performance evaluation.

The details of two case studies are shown in Table 1(b). 
For case study-A, we used US dataset that has two modali-
ties T1ce-MRI and FLAIR-MRI for prediction of LGG 
with 1p/19q codeletion and non-codeletion. Here, 42 
patients are 1p/19q codeleted and 33 patients are non-
codeleted. Observing that the tumor size varies from small 
to medium in different subjects, 6 slices for each of the 
views (axial, coronal, sagittal) have been extracted from a 
3D scan. Keeping the slice with the biggest tumor area as 
centre slice, other slices were extracted from both sides. For 
case study-B, we used TCGA dataset with four modalities 
(T1ce, FLAIR, T1 and T2) for classifying IDH genotype. 
For this case study, one can see that 55 patients are labeled 
as IDH-mutated and 112 patients as IDH-wild type from 
Table 1(b). Unlike Case study-A, this dataset has large class 
imbalance for IDH genotype. Therefore, 3 times more slices 
have been extracted for patients with IDH mutation i.e; 3 
for each view for IDH wild-type and 6 for each view for 
IDH-mutation.
Criteria: To evaluate the performance of diffuse glioma-

subtype prediction on both case studies, we used accuracy, 
precision, specificity, sensitivity/recall and F1-score as the 
evaluation criteria on the test results averaged over 5 runs. 
The metrics computed were based on the following four 
kinds of samples:

True positive (TP): 1p/19q codeleted/IDH mutated gli-
oma was correctly classified as 1p/19q codeleted/ IDH 
mutated.

False positive (FP): 1p/19q non-codeleted/IDH wild-type 
glioma was incorrectly classified as 1p/19q codeleted/ IDH 
mutated.

True negative (TN): 1p/19q non-codeleted/IDH wild-typ 
glioma was correctly classified as 1p/19q non-codeleted/ 
IDH wild-type.

False negative (FN): 1p/19q codeleted/ IDH mutated 
glioma was incorrectly classified as 1p/19q non-codeleted/ 
IDH wild-type.

defined as accuracy, specificity and sensitivity.

Accuracy =
TP+ TN

TP+ FP+ TN+ FN
, Precision =

TP

TP+ FP

Pre-processing: This step has an impact on the per-
formance. The clinical 3D volume data in US data-
set was unregistered. So, the anatomical images from 
FLAIR and T1ce scans were registered to 1mm MNI 
space template. In addition to this, the bias field cor-
rection and skull-stripping steps were performed using 
FSL [40] and ANTs [41] tools. The TCGA data needs no 
pre-processing and is readily available as skull-striped 
and co-registered with IDH genotype labels. To save 
computation, slices were rescaled to a 128×128 size 
and then normalized to range [0,1].

Results on test sets
First we evaluated the procedure on both case studies/
datasets using the classification scheme with the ellipse 
bounding box tumor data.
Case-A: In this case, US dataset containing only 

dLGG, was studied. As the data size is small, to help 
the network learn the features, we used a higher rate of 
dropout (60%) in the fully connected layers as a regular-
ization effect. Hence, the training and validation curves 
show up some variations. Figure  5 shows the training 
and validation curves as a function of epochs for  5th 
run from Table 2(a). Early stopping was applied as one 
can see from the curve that the validation accuracy did 
not improve after epoch = 67, hence the coefficients of 
DL scheme were frozen from this epoch. The testing 
accuracy obtained was 72.57% at this epoch. Table 2(a) 
shows the results on the test dataset. The average test 
accuracy for 1p/19q prediction is 69.86%. The average 
sensitivity 74.20% is higher than the specificity 64.60%, 
because patients with 1p/19q codeletion are more fre-
quent in this dataset. This resulted an average F1-score 
of 73.51%.
Case-B: As observed in Fig.  5 for  4th run from 

Table  2(b), the test accuracy obtained was 82.58% at 
epoch = 76. Observing the average prediction result 
of this case study from Table 2(b), the average sensitiv-
ity (72.32%) lower than the average specificity (86.65%) 
because of the high class imbalance in this dataset 
between IDH mutated and IDH wild-type class. The 
average accuracy is 79.50% and average F1-score as 
78.06%. Here, due to large class imbalance F1-score can 
be considered a better metric for the evaluation.

Specificity =
TN

FP+ TN
, Sensitivity/Recall =

TP

TP+ FN

F1-score = 2×
(Recall× Precision)

Recall+ Precision
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Comparison of prediction results with the annotated GT 
data
We then compare the prediction performance through 
otherwise identical DL pipeline, but using annotated GT 
test sets where the DL scheme was trained by annotated 
GT training data. The summary of the average perfor-
mance metrics (all averaged over 5 runs through same 
sequence of data re-partition for each run and re-training 
the DL scheme) is shown in Fig. 6. Observing the results 

for the difference in performance in Table 3, one can see 
that the average test accuracy with ellipse bounding box 
has resulted in slightly degraded performance on the test 
datasets, by 2.92% in US dataset (with difference of 1.85% 
in sensitivity and 3.97% in specificity) and by 3.23% in 
TCGA dataset (with difference of 3.05% in sensitivity and 
3.13% in specificity).

To further examine the difference between the ellipse 
bounding box areas and the GT tumor boundaries 

Fig. 5 Training (green) and validation (red) curves on ellipse bounding box tumor data as a function of epochs for both case studies. Early 
stopping strategy was used, where blue dot points to the epoch whose parameters were used for test set. Left: For US dataset, the validation curve 
converged at epoch = 67. Right: For TCGA dataset, the validation curve converged at epoch = 76, after which the validation losses didn’t improve

Table 2 Comparison of the average test results for diffuse glioma‑subtypes using ellipse bounding box tumor data for 5 runs. The 
highest values obtained in each run are displayed in bold text. (a) Case‑A for US dataset (1p/19q prediction). (b) Case‑B for TCGA 
dataset (IDH genotype)

Run Dataset Accuracy (%) Precision (%) Sensitivity(%) Specificity(%) F1‑Score(%)

(a) Case‑A: Prediction Result on Ellipse Bounding Tumor Areas

1 65.97 70.00 69.14 61.90 69.57

2 US 71.53 74.10 75.93 65.87 75.00

3 (1p/19q Codel/ 68.06 72.73 69.14 66.67 70.90

4 Non‑Codel) 71.18 74.25 76.54 65.87 75.38

5 72.57 73.45 80.25 62.70 76.70
Average(∣σ∣) 69.86 (2.46) 72.91(1.55) 74.20(4.39) 64.60 (1.92) 73.51(2.76)

(b) Case‑B: Prediction Result on Ellipse Bounding Tumor Areas

1 79.55 85.03 71.71 87.37 77.80

2 TCGA 76.01 78.45 71.72 80.30 74.93

3 (IDH mut/ 80.30 86.23 72.73 87.88 78.91

4 wild‑type) 82.58 88.69 75.25 89.90 81.42
5 79.04 85.80 70.20 87.88 77.22

Average(∣σ∣) 79.50(2.12) 84.84(3.42) 72.32(1.67) 86.65(3.28) 78.06 (2.13)
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marked by medical experts (see Fig. 7), the average tumor 
dice scores were computed on the training sets of the 
two datasets. The dice score is defined as D =

2|X
⋂

Y |

|X |+|Y |
 , 

where X is the tumor image with pixels within the ellipse 
area, and Y is the GT tumor image with pixels within 
the GT tumor boundaries. Table  4 shows the average 
of dice scores on the training sets which indicates that 
some non-tumor pixels were included in ellipse bound-
ing boxes. This is expected as tumor shape is non ellip-
tical (see Fig.  7, where both GT tumor areas and the 
ellipse bounding boxes are marked on images). This is 
rather encouraging, as it indicates that replacing medical 

Fig. 6 Summary of the evaluation metrics and comparison of prediction on ellipse bounding box data and GT data using multi‑stream CNN 
scheme. Left: Case‑A: Comparison on US dataset. Right: Case‑B: Comparison on TCGA dataset

Table 3 Performance difference on average prediction results 
(over 5 runs) by using GT tumor data and ellipse tumor bounding 
box data for training, where the standard deviation is included in 
(·) after each performance value

Case Study Tumor Area Av. Acc.(∣σ∣) Av. Sen.(∣σ∣) Av. Spec.(∣σ∣)

A Ellipse 69.86(2.46) 74.20(4.39) 64.60(1.92)

GT 72.78(1.45) 76.05(1.63) 68.57(1.78)

Difference 2.92(1.45) 1.85(1.78) 3.97(1.63)

B Ellipse 79.50(2.12) 86.65(3.28) 72.32(1.67)

GT 82.73(1.82) 89.70(2.00) 75.45(3.04)

Difference 3.23(0.3) 3.05(1.28) 3.13(1.37)

Fig. 7 Example images of zoom in brain tumor MRIs. Blue curves are the GT tumor boundaries manually drawn by medical experts, and red curves 
are the ellipse bounding boxes surrounding the tumors
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experts’ marked GT tumor areas by ellipse bounding box 
areas in the training has resulted in small performance 
reduction in the classification (see Table 3) on test sets. 
Further, it is worth mentioning that medical experts’ 
marked GT tumors would be the best results that any 
automatic segmentation could generate, and hence, 
Table  3 equivalently is to have compared ours with the 
network trained by using the best possible segmented 
tumor areas.

Discussion
Some insights can be obtained from our experimental 
results using the proposed strategy:

• Using ellipse bounding box strategy showed good 
performance on two different datasets for diffuse gli-
oma-subtype prediction: US dataset for WHO grade 
2 dLGGs (to predict 1p/19q codeletion/non-code-
letion) and TCGA data (to predict IDH mutation/
wild-type). It is worth mentioning that other shape 
of bounding boxes, e.g., rectangles [42], can also 
be selected. We chose elliptical shape to reduce the 
false positive tumor pixels around the corner areas 
of rectangles, so that fewer non-tumor pixels would 
be wrongly labeled and subsequently used for super-
vised training of tumors.

• The average test accuracy of US dataset is lower com-
paratively because it consists of only dLGG without 
significant contrast enhancement. The other reason 
is rather smaller dataset size. On the other hand, 
TCGA dataset performs better probably because it 
consists of patients with both LGG and HGG groups 
and since the task of IDH detection is easier than that 
of 1p/19q codeletion.

• Average test accuracy on both the datasets, showed 
slight degradation in performance of about 3% on the 
ROIs selected by the proposed strategy. This degra-
dation appears as a trade-off between time and per-
sonnel demanding task of manual annotation and a 
slightly reduced performance and can perhaps be 
counteracted by having more training data available 
using this approach.

• Several studies have reported their classification 
performance on 1p/19q codeletion status using data 

from both diffuse LGGs and HGGs [10, 12]. Tumors 
of higher grades typically looks very different and 
the data is interrelated to molecular markers that 
it might cause a significant boost in performance. 
In our study, US dataset consisted of only dLGGs 
(WHO grade 2) that appears with non-enhanced 
hyperintensive tumor areas making it more challeng-
ing to categorize.

• For IDH genotype, there are some recent studies with 
superior performance based upon segmentation with 
more patients and having better balance between 
classes [13, 43]. Although the scope of the paper 
was not to compare with them or to create a state-
of -the-art prediction. Still, our aim was to study 
whether a simpler set-up would produce compara-
ble results using a relevant method [44, 45]. Based 
upon our findings, we believe it is reasonable to use 
the strategy of tight bounding box and to increase the 
amount of data available in addition to make it simple 
and clinical relevant. A significant increase in train-
ing data may also actually improve performance in 
future experiments.

Limitations: One effective way of further improving 
the performance is to increase the size of training dataset 
since accurate feature characterization in DL is depend-
ent on using large number of training data. In our study, 
the overall size and the imbalance in the datasets for two 
classes caused one class with relatively lower perfor-
mance that has affected the average test performances. 
One solution is to add synthetic MRI slices in the training 
dataset through, e.g., employing Generative Adversarial 
Networks. Furthermore, automatic algorithms instead 
of manual selection of ellipse bounding box can improve 
the practical application and could be further studied.

Conclusion
Manual annotation of MRI tumor areas is time con-
suming and requires considerable medical expertise. 
Also, automatic segmentation is ill-defined due to MR 
image differences from multiple imaging centers. More 
data is desirable in radiogenomic analysis but many 
available datasets lack expert tumor boundary anno-
tation. An alternate paradigm of using tumor ROIs by 
tight ellipse bounding boxes is studied. Our study has 
shown that it is feasible to use ellipse shape tumor 
bounding box areas in place of annotated tumor GT 
areas for supervised trained DL, leading to good perfor-
mance (average test accuracy of 69.86% for predicting 
1p/19q codeletion and 79.50% for IDH mutation) with 
a small performance degradation (approximately 3.0%). 
Our results show a possible way to trade-off between 
training DL schemes using manually annotated tumors 

Table 4 Averaging tumor dice score calculated between 
medical experts’ marked GT tumor areas and ellipse tumor 
bounding box areas

Case Study Dataset Av. Dice score (∣σ∣)

A US 0.8046 (0.0652)

B TCGA 0.8279 (0.0514)



Page 10 of 11Ali et al. BMC Biomedical Engineering             (2022) 4:4 

and using bounding boxes surrounding the tumors, in 
terms of saving annotation time and accepting a small 
performance degradation (about 3%). Our results 
demonstrate that the tissues surrounding the tumor 
regions in the ellipse bounding box areas do not cause 
a major deterioration of performance in predicting the 
glioma-subtypes.
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